
Homework 5

Convex Optimization 10-725/36-725

Due Friday December 4 at 4:00pm
submitted to Mallory Deptola in GHC 8001
(Remember to submit each problem on a separate
sheet of paper, with your name on at the top)

1 Nonconvex, but still strong [Shashank]

This question is from B&V Additional Exercises 4.6. Consider the problem

minimize f(x) = xTAx+ 2bTx

subject to xTx ≤ 1
(1)

with variable x ∈ Rn, and data A ∈ Sn, b ∈ Rn. We do not assume that A is positive semidefinite,
and therefore the problem is not necessarily convex. In this exercise we show that x is (globally)
optimal if and only if there exists a λ such that

‖x‖2 ≤ 1, λ ≥ 0, A+ λI � 0, (A+ λI)x = −b, λ(1− ‖x‖22) = 0 (2)

From this we will develop an efficient method for finding the global solution. The conditions (2) are
the KKT conditions for (1) with the inequality A+ λI � 0 added.

(a) Show that if x and λ satisfy (2), then f(x) = inf x̃ L(x̃, λ) = g(λ), where L is the Lagrangian
of the problem and g is the dual function. Therefore strong duality holds, and x is globally
optimal.

(b) Next show that the conditions (2) are also necessary. Assume that x is globally optimal for
(1). Distinguish the two cases:

(i) ‖x‖2 < 1. Show that (2) holds with λ = 0. (Hint: If the constraint is inactive at the
solution, the function has a local minima at x.)

(ii) ‖x‖2 = 1. First prove that (A+ λI)x = −b for some λ ≥ 0. It then remains to show that
A+λI � 0. If not, argue that there exists a w with wT (A+λI)w < 0 such that wTx 6= 0.

Show that for such a w, the point y = x− 2 w
T x

wTw
w satisfies ‖y‖2 = 1 and f(y) < f(x).

(c) The optimality conditions (2) can be used to derive a simple algorithm for (1). Using the
eigenvalue decomposition A =

∑n
i=1 αiqiq

T
i , of A, we make a change of variables yi = qTi x,

and write (1) as

minimize

n∑
i=1

αiy
2
i + 2

n∑
i=1

βiyi

subject to yT y ≤ 1

(3)

where βi = qTi b. The transformed optimality conditions (2) are

‖y‖2 ≤ 1, λ ≥ −αn, (αi + λ)yi = −βi, i = 1, . . . , n, λ(1− ‖y‖2) = 0

if we assume that α1 ≥ α2 ≥ . . . ≥ αn. Give an algorithm for computing the solution y and λ.
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2 Safe screening rules for the lasso [Hanzhang]

In this problem we are will derive the SAFE screening rule for Lasso.

min
β∈Rp

1

2
‖Y −Xβ‖22 + λ‖β‖1

A screen rule enables us to perform some efficient computation to know that some dimensions βj
has to be 0 in the optimal solution, without actually solving the optimization.

(a) Let f be a convex function, X ∈ Rn×p be the feature matrix, and λ > 0. Show that the dual of

min
β∈Rp

f(Xβ) + λ‖β‖1, (4)

is as follows.

max
u∈Rn

−f∗(−u) subject to ‖XTu‖∞ ≤ λ. (5)

(Hint: You did something similar in in exam question 5.)

(b) Show the KKT stationary condition of the primal problem (4) is as follows.

XTu ∈ λ∂‖β‖1 = λ

{
{sign(βj)} if βj 6= 0

[−1, 1] if βj = 0
, j = 1, . . . p. (6)

The idea of the screening rule is as follows. If we are given that the dual maximiztion has
a lower bound γ, i.e., there exists u feasible such that −f∗(−u) ≥ γ, then for each k = 1, 2, ..., p, we
can perform the following optimization:

Tk := max
u∈Rn

|XT
k u| subject to − f∗(−u) ≥ γ. (7)

If we have Tk < λ, then at the optimal dual solution, we will also have |XT
k u
∗| < λ, since −f∗(−u) ≥

γ contains the optimal solution u∗. This is critical because by the stationary KKT condition of the
primal in (6) we have βk = 0. So by strong duality the primal solution also has βk = 0, hence giving
us a screening rule that eliminates βk from the problem.

The remainder of this problem has two tasks: solving the optimization for Tk and finding the
lower bound γ.

(c) (Solving Tk) We break problem (7) with the sign of XT
k u. Derive that the dual of the positive

part

Tk,+ := max
u∈Rn

XT
k u subject to − f∗(−u) ≥ γ (8)

is:

Tk,+ = min
µ>0
−µγ + µf(−Xk

µ
). (9)

and show that for Lasso, where f(Z) = 1
2‖Z − Y ‖

2
2, we have

Tk,+ =
√
Y TY − 2γ + Y TXk,
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assuming that feature is normalized so that XT
k Xk = 1.

Similarly you can do the same for Tk,− (you don’t have to show this) and finally you will have

Tk = max(Tk,+, Tk,−) =
√
Y TY − 2γ + |Y TXk|. (10)

(d) (Finding γ) It’s enough to find an appropriate γ that lower bounds the dual objective. One
way to do so is first find a u0, such that ‖XTu0‖∞ = λ0 ≥ λ, and then scale u0 so that the dual
constraint is met, i.e., we set u = su0. To find the optimal scaling factor s, we solve the following:

γ(u0) = max
s
−f∗(−su0) subject to |s| ≤ λ

λ0
.

Assume λmax = maxk |XT
k Y | ≥ λ. Solve this optimization for Lasso by setting u0 = −Y . What’s

the optimal s and the resulting γ? What’s the final form of Tk in terms of Xk, Y , λ and λmax?

(e) (Bonus) What happens if λmax < λ?

3 ADMM to the rescue [Dallas]

For any two of the folloiwng three problems, reparametrize in a such a way that allows you to
apply ADMM, and describe the ADMM steps, with the dual variable in scaled form. Note: if the
ADMM subproblems require further optimization, i.e., they do not admit a closed form solution, then
you must explain how to solve them. (Bonus points for introducing the fewest auxiliary vairables as
possible, and getting each subproblem to be solveable closed form.)

(a) For a given matrix S ∈ Sn+,

min
Θ∈S+n

tr(SΘ)− log det Θ + λ‖M(Θ)‖1

where M is a linear operator that excludes the diagonal of the input matrix, i.e.,

[M(Θ)]ij =

{
Θij i 6= j

0 otherwise.

(b) For given vectors a, b ∈ Rn,

min
x∈Rn

‖x− a‖22 + λ‖x− b‖∞

subject to 1Tx = 1, x ≥ 0.

(c) For a given matrix X ∈ Rn×p,

min
P∈Sn+

‖X − PX‖2F + λ

p∑
i=1

p−1∑
j=1

|Pi,j − Pi,j+1|

subject to tr(P ) = k, P � 0.
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Figure 1: 20 points in R2 to be clustered.

4 Convex clustering via ADMM [Matt]

In this problem we will implement convex clustering using ADMM. To keep the implementation
simple, we will deal with a small dataset of n = 20 points in R2, shown in Figure 1, and available
as points.txt on the course website. Arranging the points as the rows of the matrix Y ∈ R20×2,
we’ll perform clustering by solving the optimization problem

min
X∈R20×2

(1/2)‖X − Y ‖2F +
∑
i,j

wij‖xi − xj‖2

where xTi is the ith row of the matrix matrix X and the weight wij is defined as

wij = exp
(
−γ‖yi − yj‖22

)
Conceptually, even though X is the same size as Y , the group fused lasso penalty will encourage
many of these points to be equal, leaving us with a smaller number of cluster centers at the solution
(of course, depending on the parameter γ).

Next, as in class, define D to be the |E| × n differencing operator over a graph: if e` = (i, j),
then D has `th row

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0).

In this problem we use the fully connected graph and so we have |E| = (20 · 19)/2. Now, we apply
ADMM to the modified problem

min
X,Z

(1/2)‖X − Y ‖2F +
∑
i,j∈E

wij‖zij‖2,

subject to Z = DX

where zTij is the row of Z corresponding to the difference between nodes i and j. By modifying the
problem in this way, the objective is now separable and each of the terms will yield a subproblem
with simple closed-form solution (as we will see shortly). The ADMM iterations for this problem
are given by

Xk+1 := argmin
X

(1/2)‖X − Y ‖2F + (ρ/2)‖DX − Zk + Uk‖2F

Zk+1 := argmin
X

∑
i,j∈E

wij‖zij‖2 + (ρ/2)‖DXk+1 − Z + Uk‖2F

Uk+1 := Uk +DXk+1 − Zk+1
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where U is a scaled version of the dual variable for the equality constraint.

(a) Derive the closed form solutions for the X- and Z-updates.

(b) Implement these iterations and run the algorithm with γ = 1.5 and ρ = 0.1, use the stopping
criterion

‖DXk − Zk‖F ≤ 10−3

‖ρDT (Zk − Zk−1)‖F ≤ 10−3.

Plot the cluster centers along with the original points.

(c) (bonus) Vary γ and plot the solution path (e.g. in the style of lecture 19, slide 47).
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