Homework 5

Convex Optimization 10-725/36-725

Due Friday December 4 at 4:00pm
submitted to Mallory Deptola in GHC 8001

(Remember to submit each problem on a separate
sheet of paper, with your name on at the top)

1 Nonconvex, but still strong [Shashank]

This question is from B&V Additional Ezercises 4.6. Consider the problem

minimize  f(z) = 27 Ax + 2"z 1)

subject to 2Tz <1
with variable z € R™, and data A € S, b € R™. We do not assume that A is positive semidefinite,
and therefore the problem is not necessarily convex. In this exercise we show that z is (globally)
optimal if and only if there exists a A such that

[z, <1, A>0, A+A =0, (A+A)z=—b, A1—]|z[]3)=0 (2)

From this we will develop an efficient method for finding the global solution. The conditions (2) are
the KKT conditions for (1) with the inequality A + AI = 0 added.

(a) Show that if z and X satisfy (2), then f(x) = infz L(Z, \) = g(\), where L is the Lagrangian
of the problem and g is the dual function. Therefore strong duality holds, and x is globally
optimal.

(b) Next show that the conditions (2) are also necessary. Assume that z is globally optimal for
(1). Distinguish the two cases:

(i) |lzl|y < 1. Show that (2) holds with A = 0. (Hint: If the constraint is inactive at the
solution, the function has a local minima at x.)

(ii) ||z|l, = 1. First prove that (A+ AI)x = —b for some A > 0. It then remains to show that
A+AI = 0. If not, argue that there exists a w with w? (A + AI)w < 0 such that w”z # 0.
Show that for such a w, the point y = z — 22 Zw satisfies llyll, =1 and f(y) < f(x).

wTw

(¢) The optimality conditions (2) can be used to derive a simple algorithm for (1). Using the
eigenvalue decomposition A = 37" | a,;q;q] , of A, we make a change of variables y; = ¢ z,
and write (1) as

n n
minimize ;g +2 Y By
=1 i—1 3)

subject to yly <1
where 3; = ¢]'b. The transformed optimality conditions (2) are
HyHQ < 1? )‘Z —Qp, (a1+)‘)yl = _Bia i:L'-'anv )‘(1_ ||yH2) =0

if we assume that oy > ag > ... > . Give an algorithm for computing the solution y and .



2 Safe screening rules for the lasso [Hanzhang]

In this problem we are will derive the SAFE screening rule for Lasso.

1
in —[|Y — X35+ A
min o Bliz + AllAlh

A screen rule enables us to perform some efficient computation to know that some dimensions 3;
has to be 0 in the optimal solution, without actually solving the optimization.

(a) Let f be a convex function, X € R™*P be the feature matrix, and A > 0. Show that the dual of
i X A 4
min f(XB) + AllBl, (4)
is as follows.

max —f*(—u) subject to || XTulle < A (5)
u€R™

(Hint: You did something similar in in exam question 5.)

(b) Show the KKT stationary condition of the primal problem (4) is as follows.

T ) {sien(B)} B #£0
X uewﬁlh—)\{[_Lu it 5, — 0 J=1..p. (6)

The idea of the screening rule is as follows. If we are given that the dual maximiztion has
a lower bound 7, i.e., there exists u feasible such that —f*(—u) > =, then for each k = 1,2, ..., p, we
can perform the following optimization:

Ty = max |XTu| subject to  — f*(—u) > 1. (7)
u€eR™

If we have T}, < X, then at the optimal dual solution, we will also have | X[ u*| < A, since — f*(—u) >
~ contains the optimal solution w*. This is critical because by the stationary KKT condition of the
primal in (6) we have 8 = 0. So by strong duality the primal solution also has 8y = 0, hence giving
us a screening rule that eliminates [ from the problem.

The remainder of this problem has two tasks: solving the optimization for T} and finding the
lower bound ~.

C SO]Vll’lg k Q. p O g O 2 u. a ual O pOS
1 we b]e k l)le“l ; witn (]le S1g1 l /‘( Dell\/e ‘ll ]le (1 ” € ‘]Ve

Ty 4 i= max XFu  subject to  — f*(—u) >~ (8)
ueR™
is:

X
T4+ = min — LA
o = 10—y o+ puf u) (9)

and show that for Lasso, where f(Z) = 3||Z — Y||3, we have

Ter =VYTY =2y + YT Xy,



assuming that feature is normalized so that XkTXk =1.
Similarly you can do the same for Ty _ (you don’t have to show this) and finally you will have

Ty = max(Ty 4+, Th—) = VYTY — 29 + [YT X, . (10)

(d) (Finding v) It’s enough to find an appropriate v that lower bounds the dual objective. One
way to do so is first find a wug, such that | XTug|lec = Ao > A, and then scale ug so that the dual
constraint is met, i.e., we set u = sug. To find the optimal scaling factor s, we solve the following:

A
v(up) = max — f*(—sug) subject to [s] < o
E 0

Assume A4 = maxy |X,€TY\ > A. Solve this optimization for Lasso by setting ug = —Y. What’s
the optimal s and the resulting 4?7 What’s the final form of T} in terms of X, Y, A and Apqz7

(e) (Bonus) What happens if Apar < A?

3 ADMM to the rescue [Dallas]

For any two of the folloiwng three problems, reparametrize in a such a way that allows you to
apply ADMM, and describe the ADMM steps, with the dual variable in scaled form. Note: if the
ADMM subproblems require further optimization, i.e., they do not admit a closed form solution, then
you must explain how to solve them. (Bonus points for introducing the fewest auxiliary vairables as
possible, and getting each subproblem to be solveable closed form.)

(a) For a given matrix S € S,

min tr(SO) — logdet © + \||M(O)]]1
ocst

where M is a linear operator that excludes the diagonal of the input matrix, i.e.,

Oi 177
0 otherwise.

[M(©))i; = {

(b) For given vectors a,b € R™,
. _ 2 _
min [z — all3 + Allz = bl|o
subject to 1Te=1,2>0.

(c) For a given matrix X € R"*P,

p p—1
in IX = PX[[3+AD D 1Py — Pijal
+ i=1 j=1

subject to tr(P) =k, P> 0.



Figure 1: 20 points in R? to be clustered.

4 Convex clustering via ADMM [Matt]

In this problem we will implement convex clustering using ADMM. To keep the implementation
simple, we will deal with a small dataset of n = 20 points in R?, shown in Figure 1, and available
as points.txt on the course website. Arranging the points as the rows of the matrix Y € R20%2,
we’ll perform clustering by solving the optimization problem

; 2 M —
o (1/2>\\X—Y||F+Z§Jjwm||xl z;ll2

where x] is the ith row of the matrix matrix X and the weight w;; is defined as

wi; = exp (—7llyi — y;3)

Conceptually, even though X is the same size as Y, the group fused lasso penalty will encourage
many of these points to be equal, leaving us with a smaller number of cluster centers at the solution
(of course, depending on the parameter ).
Next, as in class, define D to be the |E| x n differencing operator over a graph: if e, = (4, 7),
then D has ¢th row
D;=(0,...—1,...1
U

7

,...0).

In this problem we use the fully connected graph and so we have |E| = (20 - 19)/2. Now, we apply
ADMM to the modified problem

3 — 2 .. ..
win (/21X = YR+ Y wilzile,
i,jEE
subject to Z = DX
where zg is the row of Z corresponding to the difference between nodes i and j. By modifying the
problem in this way, the objective is now separable and each of the terms will yield a subproblem

with simple closed-form solution (as we will see shortly). The ADMM iterations for this problem
are given by

XM= argmin 1/21X = Y%+ (p/2)| DX — Z* + U*| %

240 = argmin 3wyl + (o/2) DX - 24 UM
i,jEE

Uk:+1 — Uk: +DXk+1 o Zk?+1



where U is a scaled version of the dual variable for the equality constraint.
(a) Derive the closed form solutions for the X- and Z-updates.

(b) Implement these iterations and run the algorithm with v = 1.5 and p = 0.1, use the stopping
criterion

|DX* — Z¥||p <1073
lpDT(Z* = Z* 1) || < 1072

Plot the cluster centers along with the original points.

(c) (bonus) Vary v and plot the solution path (e.g. in the style of lecture 19, slide 47).



