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Last time: optimization basics

• Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

• Properties and first-order optimality

• Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)
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Outline

Today:

• Linear programs

• Quadratic programs

• Semidefinite programs

• Cone programs
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Linear program

A linear program or LP is an optimization problem of the form

min
x

cTx

subject to Dx ≤ d
Ax = b

Observe that this is always a convex optimization problem

• First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

• Dantzig’s simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we’ll see interior point methods)

• Fundamental problem in convex optimization. Many diverse
applications, rich history
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Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min
x

cTx

subject to Dx ≥ d
x ≥ 0

Interpretation:

• cj : per-unit cost of food j

• di : minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet
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Example: transportation problem

Ship commodities from given sources to destinations at minimum
cost

min
x

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ si, i = 1, . . . ,m

m∑
i=1

xij ≥ dj , j = 1, . . . , n, x ≥ 0

Interpretation:

• si : supply at source i

• dj : demand at destination j

• cij : per-unit shipping cost from i to j

• xij : units shipped from i to j
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Example: basis pursuit

Given y ∈ Rn and X ∈ Rn×p with p > n. Suppose we seek the
sparsest solution to underdetermined system of equations Xβ = y

Nonconvex formulation:

min
β

‖β‖0

subject to Xβ = y

`1 approximation, often called basis pursuit:

min
β

‖β‖1

subject to Xβ = y
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Basis pursuit is a linear program. Reformulation:

min
β

‖β‖1

subject to Xβ = y

⇐⇒
min
β,z

1T z

subject to z ≥ β
z ≥ −β
Xβ = y

(Check that this makes sense to you)
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Example: Dantzig selector

Modification of previous problem, but allowing for Xβ ≈ y (not
enforcing exact equality), the Dantzig selector:1

min
β

‖β‖1

subject to ‖XT (y −Xβ)‖∞ ≤ λ

Here λ ≥ 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

1Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”
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Standard form

A linear program is said to be in standard form when it is written as

min
x

cTx

subject to Ax = b

x ≥ 0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b

where Q � 0, i.e., positive semidefinite

Note that this problem is not convex when Q 6� 0. When we say
quadratic program or QP from now on, we implicitly assume that
Q � 0
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max
x

µTx− γ

2
xTQx

subject to 1Tx = 1

x ≥ 0

Interpretation:

• µ : expected assets’ returns

• Q : covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, . . . xn, recall the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

This is a quadratic program
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β∈Rp

‖y −Xβ‖22

subject to ‖β‖1 ≤ s

Here s ≥ 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative way to parametrize the lasso problem (called Lagrange,
or penalized form):

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

Now λ ≥ 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:

min
x

cTx

subject to Dx ≤ d
Ax = b

Can generalize by changing ≤ to different (partial) order. Recall:

• Sn is space of n× n symmetric matrices

• Sn+ is the space of positive semidefinite matrices, i.e.,

Sn+ = {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn}

• Sn++ is the space of positive definite matrices, i.e.,

Sn++ =
{
X ∈ Sn : uTXu > 0 for all u ∈ Rn \ {0}

}
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Facts about Sn, Sn+, Sn++

• Basic linear algebra facts:

X ∈ Sn =⇒ λ(X) ∈ Rn

X ∈ Sn+ ⇐⇒ λ(X) ∈ Rn+
X ∈ Sn++ ⇐⇒ λ(X) ∈ Rn++

• We can define an inner product over Sn: given X,Y ∈ Sn,

〈X,Y 〉 = tr(XY )

Will also denote this by X • Y

• We can define a partial ordering over Sn (called the Loewner
ordering): given X,Y ∈ Sn,

X � Y ⇐⇒ X − Y ∈ Sn+
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min
x

cTx

subject to x1F1 + . . .+ xnFn � F0

Ax = b

Here Fj ∈ Sd, j = 0, 1, . . . n and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)
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Standard form

A semidefinite program is in standard form if it is written as

min
X

C •X

subject to Ai •X = bi, i = 1, . . .m

X � 0

Any semidefinite program can be written in standard form (check
this!)
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Example: theta function

Let G = (N,E) be an undirected graph, N = {1, . . . , n}, and

• ω(G) : clique number of G

• χ(G) : chromatic number of G

The Lovasz theta function:2

ϑ(G) = max
X

11T •X

subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

The Lovasz sandwich theorem: ω(G) ≤ ϑ(Ḡ) ≤ χ(G), where Ḡ is
the complement graph of G

2Lovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A : Rm×n → Rp be a linear map,

A(X) =

 A1 •X
. . .

Ap •X


for matrices A1, . . . Ap ∈ Rm×n (and where Ai •X = tr(ATi X)).
Finding the lowest-rank solution to an underdetermined system,
nonconvex way:

min
X

rank(X)

subject to A(X) = b

Trace norm approximation:

min
X

‖X‖tr

subject to A(X) = b

This is indeed an SDP (but a bit harder to show ...)
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Conic program

A conic program is an optimization problem of the form:

min
x

cTx

subject to Ax = b

D(x) + d ∈ K

Here:

• c, x ∈ Rn, and A ∈ Rm×n, b ∈ Rm

• D : Rn → Y is a linear map, d ∈ Y , for Euclidean space Y

• K ⊆ Y is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = Rn+; for SDPs, K = Sn+
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Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min
x

cTx

subject to ‖Dix+ di‖2 ≤ eTi x+ fi, i = 1, . . . p

Ax = b

This is indeed a cone program. Why? Recall the second-order cone

Q = {(x, t) : ‖x‖2 ≤ t}
So we have

‖Dix+ di‖2 ≤ eTi x+ fi ⇐⇒ (Dix+ di, e
T
i x+ fi) ∈ Qi

for second-order cone Qi or appropriate dimensions. Now take
K = Q1 × . . .×Qp
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Observe that every LP is an SOCP. Furthermore, every SOCP is an
SDP

Why? Turns out that

‖x‖2 ≤ t ⇐⇒
[
tI x
xT t

]
� 0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:[
A B
BT C

]
� 0 ⇐⇒ A−BC−1BT � 0

for A,C symmetric and C � 0
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Hey, what about QPs?

Take a breath (phew!). So far we have established the hierachy

LPs ⊆ SOCPs ⊆ SDPs ⊆ Conic programs

What about our old friend QPs? Turns out that QPs “sneak in”
nicely into the hierarchy, in between LPs and SOCPs, completing
the picture we saw at the start

To see that QPs are SOCPs, start by rewriting a QP as

min
x,t

cTx+ t

subject to Dx ≤ d, 1

2
xTQx ≤ t

Ax = b

Now simply introduce a variable w = Q1/2x
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