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Last time: canonical convex programs

• Linear program (LP): takes the form

min
x

cTx

subject to Gx ≤ h
Ax = b

• Quadratic program (QP): like an LP, but with a quadratic
criterion

• Semidefinite program (SDP): like an LP, but with matrices

• Conic program: the most general form of all
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Gradient descent

Consider unconstrained, smooth convex optimization

min
x

f(x)

i.e., f is convex and differentiable with dom(f) = Rn. Denote the
optimal criterion value by f? = minx f(x), and a solution by x?

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point
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Gradient descent interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖22 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)
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Blue point is x, red point is

x+ = argmin
y

f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22
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Outline

Today:

• How to choose step sizes

• Convergence analysis

• Forward stagewise regression

• Gradient boosting
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Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Same example, gradient descent after 40 appropriately sized steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●*

Clearly there’s a tradeoff—convergence analysis later will give us a
better idea
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• At each iteration, start with t = 1, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x− t∇f(x)

Simple and tends to work well in practice (further simplification:
just take α = 1/2)
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Backtracking interpretation9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1, βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

For us ∆x = −∇f(x)
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Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here α = β = 0.5
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Exact line search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin
s≥0

f(x− s∇f(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it’s usually not worth it
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Convergence analysis

Assume that f convex and differentiable, with dom(f) = Rn, and
additionally

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

I.e., ∇f is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

We say gradient descent has convergence rate O(1/k)

I.e., to get f(x(k))− f? ≤ ε, we need O(1/ε) iterations

16



Proof

Key steps:

• ∇f Lipschitz with constant L ⇒

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

• Plugging in y = x+ = x− t∇f(x),

f(x+) ≤ f(x)−
(

1− Lt

2

)
t‖∇f(x)‖22

• Taking 0 < t ≤ 1/L, and using convexity of f ,

f(x+) ≤ f? +∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

= f? +
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)
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• Summing over iterations:

k∑

i=1

(f(x(i))− f?) ≤ 1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)

≤ 1

2t
‖x(0) − x?‖22

• Since f(x(k)) is nonincreasing,

f(x(k))− f? ≤ 1

k

k∑

i=1

(
f(x(i))− f?

)
≤ ‖x

(0) − x?‖22
2tk
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Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f) = Rn,
and ∇f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-
fies

f(x(k))− f? ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed
step size (β/L vs 1/L)
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Convergence analysis under strong convexity

Reminder: strong convexity of f means f(x)− 2
2‖x‖22 is convex for

some m > 0. If f is twice differentiable, then this implies

∇2f(x) � mI for any x

Sharper lower bound than that from usual convexity:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 all x, y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(m+ L)
or with backtracking line search search satisfies

f(x(k))− f? ≤ ckL
2
‖x(0) − x?‖22

where 0 < c < 1
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I.e., rate with strong convexity is O(ck), exponentially fast!

I.e., to get f(x(k))− f? ≤ ε, need O(log(1/ε)) iterations

Called linear convergence, because looks linear on a semi-log plot:
9.3 Gradient descent method 473
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Figure 9.6 Error f(x(k))−p⋆ versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
∇2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable x by x = T x̄,
where

T = diag((1, γ1/n, γ2/n, . . . , γ(n−1)/n)),

i.e., we minimize

f̄(x̄) = cT T x̄ −
m∑

i=1

log(bi − aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by γ, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f̄(x̄(k))−p̄⋆ < 10−5

as a function of γ, using a backtracking line search with α = 0.3 and β = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., γ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian ∇2f̄(x̄⋆) at the optimum is shown in
figure 9.8. For large and small γ, the condition number increases roughly as
max{γ2, 1/γ2}, in a very similar way as the number of iterations depends on γ.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.

(From B & V page 487)

Constant c depends adversely on condition number L/m (higher
condition number ⇒ slower rate)
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A look at the conditions

A look at the conditions for a simple problem, f(β) = 1
2‖y−Xβ‖22

Lipschitz continuity of ∇f :

• This means ∇2f(x) � LI
• As ∇2f(β) = XTX, we have L = σ2max(X)

Strong convexity of f :

• This means ∇2f(x) � mI
• As ∇2f(β) = XTX, we have m = σ2min(X)

• If X is wide—i.e., X is n× p with p > n—then σmin(X) = 0,
and f can’t be strongly convex

• Even if σmin(X) > 0, can have a very large condition number
L/m = σmax(X)/σmin(X)
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A function f having Lipschitz gradient and being strongly convex
satisfies:

mI � ∇2f(x) � LI for all x ∈ Rn,

for constants L > m > 0

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x ∈ Rn).
But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S = {x : f(x) ≤ f(x(0))}

This is less restrictive
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Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0 at solution x?

• If f is strongly convex with parameter m, then

‖∇f(x)‖2 ≤
√

2mε ⇒ f(x)− f? ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap

• Pro: very fast for well-conditioned, strongly convex problems

• Con: often slow, because interesting problems aren’t strongly
convex or well-conditioned

• Con: can’t handle nondifferentiable functions
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Forward stagewise regression

Let’s stick with f(β) = 1
2‖y −Xβ‖22, linear regression setting

X is n× p, its columns X1, . . . Xp are predictor variables

Forward stagewise regression: start with β(0) = 0, repeat:

• Find variable i s.t. |XT
i r| is largest, where r = y −Xβ(k−1)

(largest absolute correlation with residual)

• Update β
(k)
i = β

(k−1)
i + γ · sign(XT

i r)

Here γ > 0 is small and fixed, called learning rate

This looks kind of like gradient descent
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Steepest descent

Close cousin to gradient descent, just change the choice of norm.
Let p, q be complementary (dual): 1/p+ 1/q = 1

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖q · u
u = argmin

‖v‖p≤1
∇f(x)T v

• If p = 2, then ∆x = −∇f(x), gradient descent

• If p = 1, then ∆x = −∂f(x)/∂xi · ei, where

∣∣∣∣
∂f

∂xi
(x)

∣∣∣∣ = max
j=1,...n

∣∣∣∣
∂f

∂xj
(x)

∣∣∣∣ = ‖∇f(x)‖∞

Normalized steepest descent just takes ∆x = u (unit q-norm)
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An interesting equivalence

Normalized steepest descent with respect to `1 norm: updates are

x+i = xi − t · sign
( ∂f
∂xi

(x)
)

where i is the largest component of ∇f(x) in absolute value

Compare forward stagewise: updates are

β+i = βi + γ · sign(XT
i r), r = y −Xβ

But here f(β) = 1
2‖y −Xβ‖22, so ∇f(β) = −XT (y −Xβ) and

∂f(β)/∂βi = −XT
i (y −Xβ)

Hence forward stagewise regression is normalized steepest descent
under `1 norm (with fixed step size t = γ)
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Early stopping and sparse approximation

If we run forward stagewise to completion, then we will minimize
f(β) = ‖y −Xβ‖22, i.e., we will produce a least squares solution

What happens if we stop early?

• May seem strange from an optimization perspective (we are
“under-optimizing”) ...

• Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

min
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ s

How do lasso solutions and forward stagewise estimates compare?
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For some problems (some y,X), they are exactly the same as the
learning rate γ → 0!
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Gradient boosting

Given observations y = (y1, . . . yn) ∈ Rn, predictor measurements
xi ∈ Rp, i = 1, . . . n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

θi =

m∑

j=1

βj · Tj(xi), i = 1, . . . n

Each tree Tj inputs predictor measurements xi, outputs prediction.
Trees are grown typically pretty short

...
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Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(yi, θi) = (yi − θi)2

Want to solve

min
β∈RM

n∑

i=1

L
(
yi,

M∑

j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as minθ f(θ), over predicted values θ
(subject to θ coming from trees)
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Start with initial model, e.g., fit a single tree θ(0) = T0. Repeat:

• Evaluate gradient g at latest prediction θ(k−1),

gi =

[
∂L(yi, θi)

∂θi

] ∣∣∣∣
θi=θ

(k−1)
i

, i = 1, . . . n

• Find a tree Tk that is close to −g, i.e., Tk solves

min
trees T

n∑

i=1

(−gi − T (xi))
2

Not hard to (approximately) solve for a single tree

• Update our prediction:

θ(k) = θ(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired
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Can we do better?

Recall O(1/ε) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f? ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can attain rate O(1/k2), or O(1/
√
ε)? Answer: yes (and more)!
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