Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last time: canonical convex programs

Linear program (LP): takes the form

min o
X

subject to Gz <h
Axr =b

Quadratic program (QP): like an LP, but with a quadratic
criterion

Semidefinite program (SDP): like an LP, but with matrices
Conic program: the most general form of all

Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
€T

i.e., f is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(z), and a solution by z*

Gradient descent: choose initial z(9) € R", repeat:
) = =1 g Vf(x(k_l)), k=1,2,3,...

Stop at some point

IHANAE

LY

FEERRANERAR]

Gradient descent interpretation

At each iteration, consider the expansion

Fl) ~ (@) + V5@ 5~ 2) + oy — 3

Quadratic approximation, replacing usual V2f(z) by %I

f@)+ V@) (y—z) linear approximation to f

>=|ly — |3 proximity term to x, with weight 1/(2t)

Choose next point y = x to minimize quadratic approximation:

T =2 —tVf(x)

Blue point is z, red point is

) 1
zt = argmin f(z) + Vf(z) (v —2) + 27”.@ — x[f3
y

Outline

Today:

How to choose step sizes

e Convergence analysis

Forward stagewise regression

Gradient boosting

Fixed step size

Simply take t, =t for all k =1,2,3, ..., can diverge if ¢ is too big.
Consider f(z) = (1022 + 23)/2, gradient descent after 8 steps:

20
|

10

-10

-20

-20 -10 0 10 20

Can be slow if £ is too small. Same example, gradient descent after
100 steps:

S
N

10

-10

-20

-20 -10 0 10 20

Same example, gradient descent after 40 appropriately sized steps:

20

10

0
|

-10

-20

-20 -10 0 10 20

Clearly there's a tradeoff—convergence analysis later will give us a
better idea

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f < 1land 0 < o < 1/2

e At each iteration, start with ¢ = 1, and while

fl@ =tV f(x)) > f(x) = at|Vf(2)]3
shrink ¢t = t. Else perform gradient descent update

T =2 —tVf(x)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)

12

Backtracking interpretation

fz +tAz)

f(@) +tVf(x)T Az flx) +atVf(x)T Az

1 t
t=0 to

For us Ax = =V f(x)

13

Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):

QS 1.
39

10
|

-10

o
(I\A,.

-20 -10 0 10 20

Here a = 3 =10.5

Exact line search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin f(z — sV f(z))

s>0

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it's usually not worth it

15

Convergence analysis

Assume that f convex and differentiable, with dom(f) = R", and
additionally

IVf(x) = VI)llz < Lllz =yl for any =,y

l.e., Vf is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

Iz — 2|3
2tk

fa®) - <

We say gradient descent has convergence rate O(1/k)

le., to get f(z(M)) — f* < ¢, we need O(1/e) iterations

16

Proof
Key steps:

e Vf Lipschitz with constant L =
F) < F@) + V5@t~)+ Fly— =l all 2,y
e Plugging iny = 2 = 2 — tV f(z),
fat) < f@) - (1= 2)il
o Taking 0 < t < 1/L, and using convexity of f,
fat) < fo Vf(x)T(w) = V@I
= £+ (e =3 ~ ™ — 2 }B)

17

e Summing over iterations:

k
; 1
S D) - %) < 5 (12 - 2 - o) - 2*]3)
=1
1
< ooll2® - 273

e Since f(z®)) is nonincreasing,

* 1 i *
fE) =< 3 () =) < g =

18

Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f) = R",
and V f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-

fies))
*

(k)Y _ px < [z — 2|3
@) -1 < g

where tnin = min{l, 3/L}

If 3 is not too small, then we don't lose much compared to fixed
step size (/L vs 1/L)

19

Convergence analysis under strong convexity

Reminder: strong convexity of f means f(z) — Z||z||3 is convex for
some m > 0. If f is twice differentiable, then this implies

V2f(z) = mI forany x

Sharper lower bound than that from usual convexity:
m
f) > f(2) + V@) (y—2) + Sy =23 all 2.y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t < 2/(m + L)
or with backtracking line search search satisfies

* L *
Fa®) = f* < F2)a® o3

where 0 < ec< 1

20

l.e., rate with strong convexity is O(c¥), exponentially fast!

le., to get f(z(®) — f* < ¢, need O(log(1/€)) iterations

Called linear convergence, because looks linear on a semi-log plot:

10t

10%

ey
|

Z 100

=

“>.exact Ls.

1077

backtrackihg Ls.

—d o
10 0 50 100 150 200
k

(From B & V page 487)

Constant ¢ depends adversely on condition number L/m (higher
condition number = slower rate)

21

A look at the conditions

A look at the conditions for a simple problem, f(3) = 3|ly — X 3|3

Lipschitz continuity of V f:
e This means V2f(z) < LI
e As V2f(B) = XTX, we have L = o2

max

(X)

Strong convexity of f:
e This means V2f(z) = ml
o As V2f(B) = XTX, we have m = o2, (X)

min
e If X is wide—i.e., X is n X p with p > n—then oy, (X) =0,
and f can't be strongly convex

e Even if omin(X) > 0, can have a very large condition number
L/m = omax(X)/omin(X)

22

A function f having Lipschitz gradient and being strongly convex
satisfies:
ml < V?f(z) < LI forall z € R",

for constants L > m > 0
Think of f being sandwiched between two quadratics
May seem like a strong condition to hold globally (for all € R™).

But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S={z:f(z) < f(V)}

This is less restrictive

23

Practicalities

Stopping rule: stop when ||V f(x)||2 is small
e Recall Vf(z*) = 0 at solution z*
e If f is strongly convex with parameter m, then

IVF(@)l2 < V2me = f(z) - " <e

Pros and cons of gradient descent:
e Pro: simple idea, and each iteration is cheap
e Pro: very fast for well-conditioned, strongly convex problems
e Con: often slow, because interesting problems aren’t strongly
convex or well-conditioned
e Con: can't handle nondifferentiable functions

24

Forward stagewise regression

Let's stick with f(8) = 3|ly — XB||3, linear regression setting
X isn x p, its columns Xy, ... X, are predictor variables

Forward stagewise regression: start with 3(9) = 0, repeat:

o Find variable i s.t. |X/'r| is largest, where r = y — X3+~
(largest absolute correlation with residual)

e Update Bfk) = Bi(k_l) + v - sign(X]r)

Here v > 0 is small and fixed, called learning rate

This looks kind of like gradient descent

25

Steepest descent

Close cousin to gradient descent, just change the choice of norm.

Let p,q be complementary (dual): 1/p+1/¢=1
Steepest descent updates are 7 =z +t - Az, where

Az =[[Vf(x)lq-u
u = argmin V f(z)Tv
l[oll,<1

e If p=2, then Ax = —V f(z), gradient descent
e If p=1, then Az = —0f(x)/0x; - e;, where

of 9f
8.%’ 8.%'j

(@) = IV f(2)lloo

(x)’:, ax

Jj=1,..n

Normalized steepest descent just takes Az = u (unit g-norm)

26

An interesting equivalence

Normalized steepest descent with respect to /1 norm: updates are

e sign(gj; (;1:))

where i is the largest component of V f(z) in absolute value
Compare forward stagewise: updates are
B =Bi+ry-sign(X{r), r=y-XpB

But here f(3) = 5]y — X3, so Vf(8) = —XT(y — X}3) and
0f(8)/9Bi = =X (y — XB)

Hence forward stagewise regression is normalized steepest descent
under ¢; norm (with fixed step size t =)

27

Early stopping and sparse approximation

If we run forward stagewise to completion, then we will minimize
f(B) = |ly — XB||3, i.e., we will produce a least squares solution

What happens if we stop early?
e May seem strange from an optimization perspective (we are
“under-optimizing”) ...
e Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

ém@R? ,Hy XB|%3 subject to ||B]l1 < s

How do lasso solutions and forward stagewise estimates compare?

28

Stagewise path Lasso path

© | © |
o o
< | ~]
o o
123
2 = —
g
5 8- 8 -
o
(&)
o | e |
S} S}
[[
o o -
1 1
T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
18911 IO

For some problems (some y, X), they are exactly the same as the
learning rate v — 0!

29

Gradient boosting

Given observations y = (y1,...yn) € R", predictor measurements
r; €RP i=1,...n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

0 _Zﬁj i), i=1,...n

Each tree T inputs predictor measurements x;, outputs prediction.

Trees are grown typically pretty short

L

30

Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(y;,0;) = (y; — 0;)?

Want to solve

Jo 2 (yz,z/a] ()

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as miny f(6), over predicted values
(subject to 6 coming from trees)

31

Start with initial model, e.g., fit a single tree 90 — Ty. Repeat:

e Evaluate gradient g at latest prediction %=1,
gi = o0,

1=1,...n

b=V

e Find a tree T} that is close to —g, i.e., T solves
n
min (—gi — T(x))?

trees T “
=1

Not hard to (approximately) solve for a single tree

e Update our prediction:
0" = 0" + - Ty,

Note: predictions are weighted sums of trees, as desired

32

Can we do better?

Recall O(1/¢) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates z(¥) in

20 4+ Span{Vf(x(O))’ Vf(a;(l)), o Vf(x(kﬂ))}

Theorem (Nesterov): For any k < (n — 1)/2 and any starting
point (9 there is a function f in the problem class such that
any first-order method satisfies

3L||z* — 2|3

(k)Y _ px
J@E) =1 2 =551

Can attain rate O(1/k?), or O(1/+/€)? Answer: yes (and more)!

33

References and further reading

S. Boyd and L. Vandenberghe (2004), “Convex optimization”,

Chapter 9

T. Hastie, R. Tibshirani and J. Friedman (2009), “The
elements of statistical learning”, Chapters 10 and 16

Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

R. J. Tibshirani (2014), “A general framework for fast
stagewise algorithms”

L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

34

