
Gradient Descent

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last time: canonical convex programs

• Linear program (LP): takes the form

min
x

cTx

subject to Gx ≤ h
Ax = b

• Quadratic program (QP): like an LP, but with a quadratic
criterion

• Semidefinite program (SDP): like an LP, but with matrices

• Conic program: the most general form of all

2

Gradient descent

Consider unconstrained, smooth convex optimization

min
x

f(x)

i.e., f is convex and differentiable with dom(f) = Rn. Denote the
optimal criterion value by f? = minx f(x), and a solution by x?

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point

3

●

●

●

●

●

4

●

●

●

●

●

5

Gradient descent interpretation

At each iteration, consider the expansion

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation, replacing usual ∇2f(x) by 1
t I

f(x) +∇f(x)T (y − x) linear approximation to f

1
2t‖y − x‖22 proximity term to x, with weight 1/(2t)

Choose next point y = x+ to minimize quadratic approximation:

x+ = x− t∇f(x)

6

●

●

Blue point is x, red point is

x+ = argmin
y

f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

7

Outline

Today:

• How to choose step sizes

• Convergence analysis

• Forward stagewise regression

• Gradient boosting

8

Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x21 + x22)/2, gradient descent after 8 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

*

9

Can be slow if t is too small. Same example, gradient descent after
100 steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●●

*

10

Same example, gradient descent after 40 appropriately sized steps:

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●*

Clearly there’s a tradeoff—convergence analysis later will give us a
better idea

11

Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• At each iteration, start with t = 1, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x− t∇f(x)

Simple and tends to work well in practice (further simplification:
just take α = 1/2)

12

Backtracking interpretation9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1, βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

For us ∆x = −∇f(x)

13

Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):

−20 −10 0 10 20

−
20

−
10

0
10

20 ●

●

●●
●

●●●

●●●
●

*

Here α = β = 0.5

14

Exact line search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin
s≥0

f(x− s∇f(x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it’s usually not worth it

15

Convergence analysis

Assume that f convex and differentiable, with dom(f) = Rn, and
additionally

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

I.e., ∇f is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

We say gradient descent has convergence rate O(1/k)

I.e., to get f(x(k))− f? ≤ ε, we need O(1/ε) iterations

16

Proof

Key steps:

• ∇f Lipschitz with constant L ⇒

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 all x, y

• Plugging in y = x+ = x− t∇f(x),

f(x+) ≤ f(x)−
(

1− Lt

2

)
t‖∇f(x)‖22

• Taking 0 < t ≤ 1/L, and using convexity of f ,

f(x+) ≤ f? +∇f(x)T (x− x?)− t

2
‖∇f(x)‖22

= f? +
1

2t

(
‖x− x?‖22 − ‖x+ − x?‖22

)

17

• Summing over iterations:

k∑

i=1

(f(x(i))− f?) ≤ 1

2t

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)

≤ 1

2t
‖x(0) − x?‖22

• Since f(x(k)) is nonincreasing,

f(x(k))− f? ≤ 1

k

k∑

i=1

(
f(x(i))− f?

)
≤ ‖x

(0) − x?‖22
2tk

18

Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f) = Rn,
and ∇f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-
fies

f(x(k))− f? ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed
step size (β/L vs 1/L)

19

Convergence analysis under strong convexity

Reminder: strong convexity of f means f(x)− 2
2‖x‖22 is convex for

some m > 0. If f is twice differentiable, then this implies

∇2f(x) � mI for any x

Sharper lower bound than that from usual convexity:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 all x, y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(m+ L)
or with backtracking line search search satisfies

f(x(k))− f? ≤ ckL
2
‖x(0) − x?‖22

where 0 < c < 1

20

I.e., rate with strong convexity is O(ck), exponentially fast!

I.e., to get f(x(k))− f? ≤ ε, need O(log(1/ε)) iterations

Called linear convergence, because looks linear on a semi-log plot:
9.3 Gradient descent method 473

k

f
(x

(k
)
)
−

p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

Figure 9.6 Error f(x(k))−p⋆ versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
∇2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable x by x = T x̄,
where

T = diag((1, γ1/n, γ2/n, . . . , γ(n−1)/n)),

i.e., we minimize

f̄(x̄) = cT T x̄ −
m∑

i=1

log(bi − aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by γ, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f̄(x̄(k))−p̄⋆ < 10−5

as a function of γ, using a backtracking line search with α = 0.3 and β = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., γ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian ∇2f̄(x̄⋆) at the optimum is shown in
figure 9.8. For large and small γ, the condition number increases roughly as
max{γ2, 1/γ2}, in a very similar way as the number of iterations depends on γ.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.

(From B & V page 487)

Constant c depends adversely on condition number L/m (higher
condition number ⇒ slower rate)

21

A look at the conditions

A look at the conditions for a simple problem, f(β) = 1
2‖y−Xβ‖22

Lipschitz continuity of ∇f :

• This means ∇2f(x) � LI
• As ∇2f(β) = XTX, we have L = σ2max(X)

Strong convexity of f :

• This means ∇2f(x) � mI
• As ∇2f(β) = XTX, we have m = σ2min(X)

• If X is wide—i.e., X is n× p with p > n—then σmin(X) = 0,
and f can’t be strongly convex

• Even if σmin(X) > 0, can have a very large condition number
L/m = σmax(X)/σmin(X)

22

A function f having Lipschitz gradient and being strongly convex
satisfies:

mI � ∇2f(x) � LI for all x ∈ Rn,

for constants L > m > 0

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x ∈ Rn).
But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S = {x : f(x) ≤ f(x(0))}

This is less restrictive

23

Practicalities

Stopping rule: stop when ‖∇f(x)‖2 is small

• Recall ∇f(x?) = 0 at solution x?

• If f is strongly convex with parameter m, then

‖∇f(x)‖2 ≤
√

2mε ⇒ f(x)− f? ≤ ε

Pros and cons of gradient descent:

• Pro: simple idea, and each iteration is cheap

• Pro: very fast for well-conditioned, strongly convex problems

• Con: often slow, because interesting problems aren’t strongly
convex or well-conditioned

• Con: can’t handle nondifferentiable functions

24

Forward stagewise regression

Let’s stick with f(β) = 1
2‖y −Xβ‖22, linear regression setting

X is n× p, its columns X1, . . . Xp are predictor variables

Forward stagewise regression: start with β(0) = 0, repeat:

• Find variable i s.t. |XT
i r| is largest, where r = y −Xβ(k−1)

(largest absolute correlation with residual)

• Update β
(k)
i = β

(k−1)
i + γ · sign(XT

i r)

Here γ > 0 is small and fixed, called learning rate

This looks kind of like gradient descent

25

Steepest descent

Close cousin to gradient descent, just change the choice of norm.
Let p, q be complementary (dual): 1/p+ 1/q = 1

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖q · u
u = argmin

‖v‖p≤1
∇f(x)T v

• If p = 2, then ∆x = −∇f(x), gradient descent

• If p = 1, then ∆x = −∂f(x)/∂xi · ei, where

∣∣∣∣
∂f

∂xi
(x)

∣∣∣∣ = max
j=1,...n

∣∣∣∣
∂f

∂xj
(x)

∣∣∣∣ = ‖∇f(x)‖∞

Normalized steepest descent just takes ∆x = u (unit q-norm)

26

An interesting equivalence

Normalized steepest descent with respect to `1 norm: updates are

x+i = xi − t · sign
(∂f
∂xi

(x)
)

where i is the largest component of ∇f(x) in absolute value

Compare forward stagewise: updates are

β+i = βi + γ · sign(XT
i r), r = y −Xβ

But here f(β) = 1
2‖y −Xβ‖22, so ∇f(β) = −XT (y −Xβ) and

∂f(β)/∂βi = −XT
i (y −Xβ)

Hence forward stagewise regression is normalized steepest descent
under `1 norm (with fixed step size t = γ)

27

Early stopping and sparse approximation

If we run forward stagewise to completion, then we will minimize
f(β) = ‖y −Xβ‖22, i.e., we will produce a least squares solution

What happens if we stop early?

• May seem strange from an optimization perspective (we are
“under-optimizing”) ...

• Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

min
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ s

How do lasso solutions and forward stagewise estimates compare?

28

0.0 0.5 1.0 1.5 2.0

−
0
.2

0
.0

0
.2

0
.4

0
.6

Stagewise path
C

o
o
rd

in
a
te

s

‖β(k)‖1

0.0 0.5 1.0 1.5 2.0

−
0
.2

0
.0

0
.2

0
.4

0
.6

Lasso path

‖β̂(s)‖1

C
o
or
d
in
at
es

For some problems (some y,X), they are exactly the same as the
learning rate γ → 0!

29

Gradient boosting

Given observations y = (y1, . . . yn) ∈ Rn, predictor measurements
xi ∈ Rp, i = 1, . . . n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

θi =

m∑

j=1

βj · Tj(xi), i = 1, . . . n

Each tree Tj inputs predictor measurements xi, outputs prediction.
Trees are grown typically pretty short

...

30

Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(yi, θi) = (yi − θi)2

Want to solve

min
β∈RM

n∑

i=1

L
(
yi,

M∑

j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge

Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as minθ f(θ), over predicted values θ
(subject to θ coming from trees)

31

Start with initial model, e.g., fit a single tree θ(0) = T0. Repeat:

• Evaluate gradient g at latest prediction θ(k−1),

gi =

[
∂L(yi, θi)

∂θi

] ∣∣∣∣
θi=θ

(k−1)
i

, i = 1, . . . n

• Find a tree Tk that is close to −g, i.e., Tk solves

min
trees T

n∑

i=1

(−gi − T (xi))
2

Not hard to (approximately) solve for a single tree

• Update our prediction:

θ(k) = θ(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired

32

Can we do better?

Recall O(1/ε) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f? ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can attain rate O(1/k2), or O(1/
√
ε)? Answer: yes (and more)!

33

References and further reading

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 9

• T. Hastie, R. Tibshirani and J. Friedman (2009), “The
elements of statistical learning”, Chapters 10 and 16

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• R. J. Tibshirani (2014), “A general framework for fast
stagewise algorithms”

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

34

