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Last time: canonical convex programs

Linear program (LP): takes the form

min o
X

subject to Gz <h
Axr =b

Quadratic program (QP): like an LP, but with a quadratic
criterion

Semidefinite program (SDP): like an LP, but with matrices
Conic program: the most general form of all



Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
€T

i.e., f is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(z), and a solution by z*

Gradient descent: choose initial z(9) € R", repeat:
) = =1 g Vf(x(k_l)), k=1,2,3,...

Stop at some point
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Gradient descent interpretation

At each iteration, consider the expansion

Fl) ~ (@) + V5@ 5~ 2) + oy — 3

Quadratic approximation, replacing usual V2f(z) by %I

f@)+ V@) (y—z) linear approximation to f

>=|ly — |3 proximity term to x, with weight 1/(2t)

Choose next point y = x to minimize quadratic approximation:

T =2 —tVf(x)



Blue point is z, red point is

) 1
zt = argmin f(z) + Vf(z) (v —2) + 27”.@ — x[f3
y



Outline

Today:

How to choose step sizes

e Convergence analysis

Forward stagewise regression

Gradient boosting



Fixed step size

Simply take t, =t for all k =1,2,3, ..., can diverge if ¢ is too big.
Consider f(z) = (1022 + 23)/2, gradient descent after 8 steps:
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Can be slow if £ is too small. Same example, gradient descent after
100 steps:
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Same example, gradient descent after 40 appropriately sized steps:
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Clearly there's a tradeoff—convergence analysis later will give us a
better idea



Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f < 1land 0 < o < 1/2

e At each iteration, start with ¢ = 1, and while

fl@ =tV f(x)) > f(x) = at|Vf(2)]3
shrink ¢t = t. Else perform gradient descent update

T =2 —tVf(x)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)
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Backtracking interpretation

fz +tAz)

f(@) +tVf(x)T Az flx) +atVf(x)T Az

1 t
t=0 to

For us Ax = =V f(x)
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Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here a = 3 =10.5



Exact line search

Could also choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin f(z — sV f(z))

s>0

Usually not possible to do this minimization exactly

Approximations to exact line search are often not much more
efficient than backtracking, and it's usually not worth it
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Convergence analysis

Assume that f convex and differentiable, with dom(f) = R", and
additionally

IVf(x) = VI)llz < Lllz =yl for any =,y

l.e., Vf is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size ¢t < 1/L satisfies

Iz — 2|3
2tk

fa®) - <

We say gradient descent has convergence rate O(1/k)

le., to get f(z(M)) — f* < ¢, we need O(1/e) iterations
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Proof
Key steps:

e Vf Lipschitz with constant L =
F) < F@) + V5@t~ )+ Fly— =l all 2,y
e Plugging iny = 2 = 2 — tV f(z),
fat) < f@) - (1= 2 )il
o Taking 0 < t < 1/L, and using convexity of f,
fat) < fo Vf(x)T(w ) = V@I
= £+ (e =3 ~ ™ — 2 }B)
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e Summing over iterations:

k
; 1
S D) - %) < 5 (12 - 2 - o) - 2*]3)
=1
1
< ooll2® - 273

e Since f(z®)) is nonincreasing,

* 1 i *
fE) =< 3 () =) < g =
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Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f) = R",
and V f is Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem: Gradient descent with backtracking line search satis-

fies ) )
*

(k)Y _ px < [z — 2|3
@) -1 < g

where tnin = min{l, 3/L}

If 3 is not too small, then we don't lose much compared to fixed
step size (/L vs 1/L)
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Convergence analysis under strong convexity

Reminder: strong convexity of f means f(z) — Z||z||3 is convex for
some m > 0. If f is twice differentiable, then this implies

V2f(z) = mI forany x

Sharper lower bound than that from usual convexity:
m
f) > f(2) + V@) (y—2) + Sy =23 all 2.y

Under Lipschitz assumption as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t < 2/(m + L)
or with backtracking line search search satisfies

* L *
Fa®) = f* < F2)a® o3

where 0 < ec< 1
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l.e., rate with strong convexity is O(c¥), exponentially fast!

le., to get f(z(®) — f* < ¢, need O(log(1/€)) iterations

Called linear convergence, because looks linear on a semi-log plot:
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(From B & V page 487)

Constant ¢ depends adversely on condition number L/m (higher
condition number = slower rate)
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A look at the conditions

A look at the conditions for a simple problem, f(3) = 3|ly — X 3|3

Lipschitz continuity of V f:
e This means V2f(z) < LI
e As V2f(B) = XTX, we have L = o2

max

(X)

Strong convexity of f:
e This means V2f(z) = ml
o As V2f(B) = XTX, we have m = o2, (X)

min
e If X is wide—i.e., X is n X p with p > n—then oy, (X) =0,
and f can't be strongly convex

e Even if omin(X) > 0, can have a very large condition number
L/m = omax(X)/omin(X)
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A function f having Lipschitz gradient and being strongly convex
satisfies:
ml < V?f(z) < LI forall z € R",

for constants L > m > 0
Think of f being sandwiched between two quadratics
May seem like a strong condition to hold globally (for all € R™).

But a careful look at the proofs shows that we only need Lipschitz
gradients/strong convexity over the sublevel set

S={z:f(z) < f(V)}

This is less restrictive
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Practicalities

Stopping rule: stop when ||V f(x)||2 is small
e Recall Vf(z*) = 0 at solution z*
e If f is strongly convex with parameter m, then

IVF(@)l2 < V2me = f(z) - " <e

Pros and cons of gradient descent:
e Pro: simple idea, and each iteration is cheap
e Pro: very fast for well-conditioned, strongly convex problems
e Con: often slow, because interesting problems aren’t strongly
convex or well-conditioned
e Con: can't handle nondifferentiable functions
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Forward stagewise regression

Let's stick with f(8) = 3|ly — XB||3, linear regression setting
X isn x p, its columns Xy, ... X, are predictor variables

Forward stagewise regression: start with 3(9) = 0, repeat:

o Find variable i s.t. |X/'r| is largest, where r = y — X3+~
(largest absolute correlation with residual)

e Update Bfk) = Bi(k_l) + v - sign(X]r)

Here v > 0 is small and fixed, called learning rate

This looks kind of like gradient descent
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Steepest descent

Close cousin to gradient descent, just change the choice of norm.

Let p,q be complementary (dual): 1/p+1/¢=1
Steepest descent updates are 7 =z +t - Az, where

Az =[[Vf(x)lq-u
u = argmin V f(z)Tv
l[oll,<1

e If p=2, then Ax = —V f(z), gradient descent
e If p=1, then Az = —0f(x)/0x; - e;, where

of 9f
8.%’ 8.%'j

(@) = IV f(2)lloo

(x)’:, ax

Jj=1,..n

Normalized steepest descent just takes Az = u (unit g-norm)
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An interesting equivalence

Normalized steepest descent with respect to /1 norm: updates are

e sign(gj; (;1:))

where i is the largest component of V f(z) in absolute value
Compare forward stagewise: updates are
B =Bi+ry-sign(X{r), r=y-XpB

But here f(3) = 5]y — X3, so Vf(8) = —XT(y — X}3) and
0f(8)/9Bi = =X (y — XB)

Hence forward stagewise regression is normalized steepest descent
under ¢; norm (with fixed step size t = )
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Early stopping and sparse approximation

If we run forward stagewise to completion, then we will minimize
f(B) = |ly — XB||3, i.e., we will produce a least squares solution

What happens if we stop early?
e May seem strange from an optimization perspective (we are
“under-optimizing”) ...
e Interesting from a statistical perspective, because stopping
early gives us a sparse approximation to the least squares
solution

Well-known sparse regression estimator, the lasso:

ém@R? ,Hy XB|%3 subject to ||B]l1 < s

How do lasso solutions and forward stagewise estimates compare?
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Stagewise path Lasso path
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For some problems (some y, X), they are exactly the same as the
learning rate v — 0!
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Gradient boosting

Given observations y = (y1,...yn) € R", predictor measurements
r; €RP i=1,...n

Want to construct a flexible (nonlinear) model for outcome based
on predictors. Weighted sum of trees:

0 _Zﬁj i), i=1,...n

Each tree T inputs predictor measurements x;, outputs prediction.

Trees are grown typically pretty short

L
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Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(y;,0;) = (y; — 0;)?

Want to solve

Jo 2 (yz,z/a] ()

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as miny f(6), over predicted values
(subject to 6 coming from trees)
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Start with initial model, e.g., fit a single tree 90 — Ty. Repeat:

e Evaluate gradient g at latest prediction %=1,
gi = o0,

1=1,...n

b=V

e Find a tree T} that is close to —g, i.e., T solves
n
min (—gi — T(x))?

trees T “
=1

Not hard to (approximately) solve for a single tree

e Update our prediction:
0" = 0" + - Ty,

Note: predictions are weighted sums of trees, as desired
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Can we do better?

Recall O(1/¢) rate for gradient descent over problem class of
convex, differentiable functions with Lipschitz continuous gradients

First-order method: iterative method, updates z(¥) in

20 4+ Span{Vf(x(O))’ Vf(a;(l)), o Vf(x(kﬂ))}

Theorem (Nesterov): For any k < (n — 1)/2 and any starting
point (9 there is a function f in the problem class such that
any first-order method satisfies

3L||z* — 2|3

(k)Y _ px
J@E) =1 2 =551

Can attain rate O(1/k?), or O(1/+/€)? Answer: yes (and more)!
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