Subgradient Method

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last last time: gradient descent

Consider the problem
min f(z)

for f convex and differentiable, dom(f) = R™. Gradient descent:
choose initial (%) € R™, repeat

2®) = =0 _ g VR k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If Vf Lipschitz, gradient descent has convergence rate O(1/¢)

Downsides:
e Requires f differentiable < this lecture

e Can be slow to converge < next lecture

Subgradient method

Now consider f convex, with dom(f) = R", but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. l.e., initialize (9, repeat

g®) = =0 g gD =123,
where ¢*=1 € 9 f(x*~1), any subgradient of f at z(*~1

Subgradient method is not necessarily a descent method, so we

keep track of best iterate xﬁlz)st among (@, ...z so far, i.e.,

[(@hey) = min (@)

Outline

Today:
e How to choose step sizes
e Convergence analysis
e Intersection of sets

e Stochastic subgradient method

Step size choices

o Fixed step sizes: tp =t all k=1,2,3,...
e Diminishing step sizes: choose to meet conditions

o0 o0
Zt% < 00, Ztk = 00,
k=1 k=1

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
all step sizes options are pre-specified, not adaptively computed

Convergence analysis

Assume that f convex, dom(f) = R", and also that f is Lipschitz
continuous with constant G > 0, i.e.,

[f(@) = f()| < Glle —yllz forall 2,y

Theorem: For a fixed step size ¢, subgradient method satisfies

lim f(z) < f*+ G%t/2
k—oo

Theorem: For diminishing step sizes, subgradient method sat-
isfies

. k *
Jim f(rp) = f

Basic bound, and convergence rate

Letting R = ||2(9) — 2*||5, after k steps, we have the basic bound

2 2 k 2
() RE+G Y4
f(xbest) - f(SC*) S 9 Z;C:l ti

Previous theorems follow from this. With fixed step size ¢, we have

k R? G?t
Flagel) — f < RS

For this to be < ¢, let's make each term < ¢/2. Therefore choose
t=¢/G? and k= R?/t-1/e = R?G?/¢?

l.e., subgradient method has convergence rate O(1/¢?) ... compare
this to O(1/¢) rate of gradient descent

Example: regularized logistic regression

Given (z;,y;) € RP x {0,1} for i = 1,...n, consider the logistic
regression loss:

F(8) =Y (= vl B +log(1 + exp(a] 8))

i=1
This is a smooth and convex, with

n

VB = (v — pi(B)) i

i=1
where p;(8) = exp(z? 8)/(1 + exp(z? B)), i = 1,...n. We will

consider the regularized problem:

min f(8) + A - P(5)

BERP

where P(8) = ||8]|3 (ridge penalty) or P(3) = ||B]|1 (lasso penalty)

Ridge problem: use gradients; lasso problem: use subgradients.
Data example with n = 1000, p = 20:

Gradient descent Subgradient method
— t=0.001 s | — t=0.001
3 i — t=0.001/k
o i
-
3 3 -
I — o
[
— — [
g g 9
7 ,
Is 23
T -
— -
o wn
inl o 4
b] S
—
N
(2] o 4
T i I
-91) T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
k k

Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)

Polyak step sizes

Polyak step sizes: when the optimal value f* is known, take

fla®=D) — f*

. k=1,2,3,...
lg%*=D1|3

te =
Can be motivated from first step in subgradient proof:
lz® —a*|3 < a* D —a* |3 -20 (£ (2" D) = (7)) +7llg "V
Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to
optimal value. Convergence rate is still O(1/¢€?)

10

Example: intersection of sets

Suppose we want to find x* € C1 N ... N Cyy,, i.e., find a point in
intersection of closed, convex sets C1,...Cy,

First define

fi(z) = dist(z,C;), i=1,...m
f(z) = max fi(v)

1=1,..m

and now solve

min f(z)

Note that f* =0 = z* € C1N...NCy,. Check: is this problem
convex?

11

Recall the distance function dist(x,C') = minyec ||y — z||2. Last
time we computed its gradient

x — Po(x)

leSt(:L“, C) = m

where Pg(x) is the projection of z onto C

Also recall subgradient rule: if f(x) = max;=1__m fi(x), then

of (z) = conv< U 8fz(x)>
irfi(w)=f ()

So if fi(x) = f(z) and g; € Ofi(x), then g; € Of(x)

12

Put these two facts together for intersection of sets problem, with
fi(z) = dist(x, C;): if C; is farthest set from x (so f;(x) = f(z)),

and Fe,()

N e 1 GO
gi = Vfi(x) lz — Pc,()]]2
then g; € 0f ()

Now apply subgradient method, with Polyak size t;, = f(z(*~1).
At iteration k, with C; farthest from 2(*~1), we perform update

x(kil) — PCZ (w(kil))

(k) — g(k=1) _ p((k=1)
2®) = 4 J@) 0 = P, (2D 5

= PCi (m(k_1)>

13

For two sets, this is the famous alternating projections algorithm,
i.e., just keep projecting back and forth

(From Boyd's lecture notes)

14

Stochastic subgradient method

Consider sum of functions
m
i=1

Recall that 9 ", fi(x) = >_i", Ofi(x), and subgradient method
would repeat

2 ®) = k=1 _ Zg(’“, k=1,2,3,...

(k—=1)

where g; € 0f;(z*=1). In comparison, stochastic subgradient

method (or incremental subgradient) repeats
2® = g0 gy gD g =123,

where i, € {1,...m} is some chosen index at iteration k

15

Stochastic gradient descent: special case when f;, i =1,...m are
differentiable, so ggk_l) = Vfi(z®=1)
Two rules for choosing index 7, at iteration k:

e Cyclic rule: choose i, =1,2,...m,1,2,...m,...

e Randomized rule: choose iy € {1,...m} uniformly at random

Randomized rule is more common in practice
What's the difference between stochastic and usual (called batch)

methods? Computationally, m stochastic steps =~ one batch step.
But what about progress?

16

Consider smooth cyclic rule, for simplicity: here we cycle through a
descent step on each f; individually. After m steps (i.e., one cycle),
assuming constant step sizes ag41 = ... Qk4+m, the update is

l’(ker _ - tzvfz (k+i—1))
One batch step is instead
(k+1 —t Z va

so difference in direction is S°7" [V fi(zF+=D) — W f;(2())]

We can believe that the stochastic method still converges if V f(x)
doesn’t vary wildly with x

17

Convergence of stochastic methods

Assume each f;, i =1,...m is convex and Lipschitz with constant
G>0

For fixed step sizes t;, =t, k =1,2,3, ..., cyclic and randomized®
stochastic subgradient methods both satisfy

lim flape,) < f*+5m’Gt/2
—00

Note: mG can be viewed as Lipschitz constant for whole function
> ity fi, so this is comparable to batch bound

For diminishing step sizes, cyclic and randomized methods satisfy

. k *
Jlim f(apel) = f

1For randomized rule, results hold with probability 1

18

How about convergence rates? This is where things get interesting

Recall that the batch subgradient method rate was O(GZ,,.,/€?),
where Lipschitz constant Gpaich is for whole function

e Cyclic rule: iteration complexity is O(m3G?/€?). Therefore
number of cycles needed is O(m?G?/e?), comparable to batch
e Randomized rule?: iteration complexity is O(m2G?/€?). Thus

number of random cycles needed is O(mG?2/e?), reduced by a
factor of m!

This is a convincing reason to use randomized stochastic methods,
for problems where m is big

2For randomized rule, result holds in expectation, i.e., bound is on expected
number of iterations
19

Example: stochastic logistic regression

Back to the logistic regression problem:

min f(f) = Z (— gzl B+ log(1 + exp(x?ﬁ))

=1

fi(B)

The gradient computation V f(8) = > (yi — pi(B)); is doable
when n is moderate, but not when n ~ 500 million. Recall:

e One batch update costs O(np)
e One stochastic update costs O(p)

So clearly, e.g., 10K stochastic steps are much more affordable

Also, we often take fixed step size for stochastic updates to be ~ n
what we use for batch updates. (Why?)

20

The “classic picture”:

87 :

el
Blue: batch steps, O(np)
Red: stochastic steps, O(p)

10
|

Rule of thumb for stochastic
methods:
e generally thrive far
from optimum

e generally struggle close
to optimum

-20
|

-20 -10 0 10 20

(More on stochastic methods later in the course ...)

Can we do better?

Upside of the subgradient method: broad applicability. Downside:
O(1/€?) convergence rate over problem class of convex, Lipschitz
functions is really slow

Nonsmooth first-order methods: iterative methods that start with

z© and update (%) in

where subgradients ¢(©, ¢ ... ¢*~1 come from weak oracle

Theorem (Nesterov): For any k < n—1 and starting point (%),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

T S
f@™)—f 22<1+M)

22

Improving on the subgradient method

In words, we cannot do better than the O(1/€?) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, A is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions k), we can recover the O(1/¢)
rate of gradient descent with a simple algorithm, having important
practical consequences

23

References and further reading

D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

S. Boyd, Lecture notes for EE 264B, Stanford University,
Spring 2010-2011

Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

B. Polyak (1987), “Introduction to optimization”, Chapter 5

L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

24

