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Last time: proximal gradient descent

Consider the problem

min
x

g(x) + h(x)

with g, h convex, g differentiable, and h “simple” in so much as

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(x)

is computable. Proximal gradient descent: let x(0) ∈ Rn, repeat

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate
O(1/ε). Lastly we can accelerate this, to optimal rate O(1/

√
ε)
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Outline

Today:

• Complexity of basic operations

• Solving linear systems

• Matrix factorizations

• Sensitivity analysis

• Alternative indirect methods
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Complexity (flop counts) of basic operations

Flop (floating point operation):

• One addition, subtraction, multiplication, or division of two
floating point numbers

• Serves as a basic unit of computation

• We are interested in rough, not exact flop counts

Vector-vector operations: given a, b ∈ Rn:

• Addition, a+ b, costs n flops

• Scalar multiplication, c · a, costs n flops

• Inner product, aT b, costs 2n flops

Flops do not tell the whole story: setting every element of a to 1
costs 0 flops
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Matrix-vector product: given A ∈ Rm×n, b ∈ Rn, consider Ab:

• In general, costs 2mn flops

• For s-sparse A, costs 2s flops

• For k-banded A ∈ Rn×n, costs 2nk flops

• For A =
∑r

i=1 uiv
T
i ∈ Rm×n, costs 2r(m+ n) flops

• For A ∈ Rn×n a permutation matrix, costs 0 flops

Matrix-matrix product: for A ∈ Rm×n, B ∈ Rn×p, consider AB:

• In general, costs 2mnp flops

• For s-sparse A, costs 2sp flops (less if B is also sparse)

Matrix-matrix-vector product: for A ∈ Rm×n, B ∈ Rn×p, c ∈ Rp,
consider ABc:

• Costs 2np+ 2mn flops if done properly

• Costs 2mnp+ 2mp flops if done improperly!
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Solving linear systems

For nonsingular A ∈ Rn×n, consider solving linear system Ax = b,
i.e., computing x = A−1b:

• In general, costs about n3 flops—we’ll see more on this later

• For diagonal A, costs n flops:

x = (b1/a1, . . . bn/an)

• For lower triangular A (i.e., Aij = 0 for j > i), costs n2 flops:

x1 = b1/A11

x2 = (b2 −A21x1)/A22

...

xn = (bn −An,n−1xn−1 . . .−An1x1)/Ann

This is called forward substitution

• For upper triangular A, costs n2, by backward substitution
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• For s-sparse A, often costs � n3 flops, but exact (worse-case)
flop counts are not known for abitrary sparsity structures

• For k-banded A, costs nk2 flops—more later

• For orthogonal A, we have A−1 = AT , and so x = AT b costs
2n2 flops

• For permutation A, again A−1 = AT , and so x = AT b costs 0
flops. Example:

A =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 and A−1 = AT =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


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Matrix factorizations

As you’ve probably learned, we can solve Ax = b by, e.g., Gaussian
elimination. But instead it can be useful to factorize A:

A = A1A2 . . . Ak

and then compute x = A−1k . . . A−12 A−11 b. Usually k = 2 or 3, and

• Computing the factorization is expensive, about n3 flops

• Applying A−11 , . . . A−1k is cheaper, about n2 flops

• This is because A1, . . . Ak are structured: either orthogonal,
triangular, diagonal, or permutation matrices

This is useful when we want to solve Ax = b, Ax = b′, . . . many
linear systems in A. Also, if A undergoes a simple change, then an
old factorization for A can often be efficiently updated
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Cholesky decomposition

If A ∈ Sn++ (symmetric, positive definite), then it has a Cholesky
decomposition:

A = LLT

with L ∈ Rn×n lower triangular. Can compute this in n3/3 flops

Once we have Cholesky factors, we solve Ax = b:

y = L−1b by forward substitution, n2 flops

x = (LT )−1y by back substitution, n2 flops

So solving costs 2n2 flops

Factorization and solve steps together cost n3/3 + 2n2 flops
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Least squares problems and Cholesky

Now given y ∈ Rn, X ∈ Rn×p, consider the least squares problem:

min
β∈Rp

‖y −Xβ‖22

Assuming X has full column rank, solution is β̂ = (XTX)−1XT y.
How expensive?

• Compute XT y, in 2pn flops

• Compute XTX, in p2n flops

• Compute Cholesky of XTX, in p3/3 flops

• Solve (XTX)β = XT y, in 2p2 flops

Thus in total, about (n+ p/3)p2 flops (or np2 flops if n� p)
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QR decomposition

If A ∈ Rm×n with m ≥ n, then it has a QR decomposition:

A = QR

with Q ∈ Rm×n orthogonal (i.e., QTQ = I), and R ∈ Rn×n upper
triangular. Can compute this in 2(m− n/3)n2 flops

• If A has rank n, then all diagonal elements of R are nonzero,
and the columns of Q form an orthonormal basis for col(A)

• If A has rank r, then the first r diagonal elements of R are
nonzero, and the first r columns of Q form a basis for col(A)

Key identity: ‖x‖22 = ‖QTx‖22 + ‖Q̃Tx‖22, where Q̃ ∈ Rm×(m−n)
completes the basis from Q
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Least squares problems and QR

Now back to y ∈ Rn, X ∈ Rn×p full column rank, and the least
squares problem:

min
β∈Rp

‖y −Xβ‖22

Let X = QR be a QR decomposition. Then

‖y −QRβ‖22 = ‖QT y −Rβ‖22 + ‖Q̃T y‖22

Second term does not depend on β. So for least squares solution:

• Compute X = QR, in 2(n− p/3)p2 flops

• Compute QT y, in 2pn flops

• Solve Rβ = QT y, in p2 flops

Hence in total, about 2(n− p/3)p2 flops (or 2np2 flops if n� p)

12



Linear systems and sensitivity

Consider first the linear system Ax = b, for nonsingular A ∈ Rn×n.
The singular value decomposition of A:

A = UΣV T ,

where U, V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal with
elements σ1 ≥ . . . ≥ σn > 0

Even if A is full rank, it could be near a singular matrix B, i.e.,

dist(A,Rk) = min
rank(B)=k

‖A−B‖op

could be small, for some k < n. An easy SVD analysis shows that
dist(A,Rk) = σk+1. If this is small, then solving x = A−1b could
pose problems
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From the lens of the SVD:

x = A−1b = V Σ−1UT b =

n∑
i=1

viu
T
i b

σi

We can see that if some σi > 0 is small (close to set of rank i− 1
matrices) then we could be in trouble

Precise sensitivity analysis: fix some F ∈ Rn×n, f ∈ Rn. Solve

(A+ εF )x(ε) = (b+ εf)

Theorem: The solution to the perturbed system satisfies

‖x(ε)− x‖22
‖x‖2

≤ κ(A)(ρA + ρb) +O(ε2)

where κ(A) = σ1/σn is the condition number of A, and ρA, ρb
are the relative errors ρA = |ε|‖F‖op/‖A‖op, ρb = |ε|‖f‖2/‖b‖2
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Proof:

• By implicit differentiation,

dx

dε
(0) = A−1(f − Fx)

where we abbreviate x = x(0)

• Using a Taylor expansion around 0,

x(ε) = x+ εA−1(f − Fx) +O(ε)2

• Rearranging gives

‖x(ε)− x‖2
‖x‖2

≤ |ε|‖A−1‖op
(
‖f‖2
‖x‖2

+ ‖F‖op
)

+O(ε)2

Multiplying and dividing by ‖A‖op proves the result, since
κ(A) = ‖A‖op‖A−1‖op
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Cholesky versus QR for least squares

Linear systems: worse conditioning means great sensitivity. What
about for least squares problems?

min
β∈Rp

‖y −Xβ‖22

• Recall Cholesky solves XTXβ = XT y. Hence we know that
sensitivity scales with κ(XTX) = κ(X)2

• Meanwhile, QR operates on X, never forms XTX, and can
show that sensitivity scales with κ(X) + ρLS · κ(X)2, where
ρLS = ‖y −Xβ̂‖22

Summary: Cholesky is cheaper (and uses less memory), but QR is
more stable when ρLS is small and κ(X) is large
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Some advanced topics

• Updating matrix factorizations: can often be done efficiently
after a simple change. E.g., QR of A ∈ Rm×n can be updated
in O(m2) flops after adding or deleting a row, and O(mn)
flops after adding or deleting a column

• Underdetermined least squares: if X∈Rn×p and rank(X)<p,
the criterion ‖y −Xβ‖22 has infinitely many minimizers. One
with smallest `2 norm can be computed using QR

• Banded matrix factorizations: if A ∈ Sn++ is k-banded, then
we can compute its Choleksy decomposition in nk2/4 flops,
and apply it in 2nk flops

• Sparse matrix factorizations: this is in general a lot trickier,
and can require very complex pivoting schemes. Theoretical
analysis is loose, but practical performance is extremely good.
See Davis (2006), “Direct methods for sparse linear systems”
and SuiteSparse
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Alternative indirect methods

So far we’ve been talking about direct methods for linear systems.
These return the exact solution (in perfect computing environment)

Indirect methods (iterative methods) produce x(k), k = 1, 2, 3, . . .
converging to a solution x. Most often used for very large, sparse
systems

• Jacobi iterations are the most basic approach. Suppose that
A ∈ Sn++, initialize x(0) ∈ Rn, and repeat for k = 1, 2, 3, . . .

x
(k+1)
i =

(
bi −

∑
j 6=i

Aijx
(k)
j

)
/Aii, i = 1, , . . . n

• Gauss-Seidl iterations are similar but always use most recent

iterates, i.e., use
∑

j<iAijx
(k+1)
j +

∑
j>iAijx

(k)
j instead of

above sum. Gauss-Seidl iterations always converge, but Jacobi
iterations do not

18



• Gradient descent on f(x) = 1
2x

TAx− bTx: this repeats

r(k) = b−Ax(k)

x(k+1) = x(k) + texact · r(k)

Since A ∈ Sn++, the criterion f is strongly convex, implying
linear convergence. But the contraction depends adversely on
κ(A). That is, gradient directions r(k) are not diverse enough
across iterations

• Conjugate gradient method replaces gradient directions above
with clever directions p(k) satisfying

p(k) ∈ span{Ap(1), . . . Ap(k−1)}⊥

Note these directions are constructed to be diverse. Conjugate
gradient method still uses one A multiplication per iteration,
and in principle, it takes n iterations or much less. In practice,
this is not true (numerical errors), and preconditioning is used
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