
Numerical Linear Algebra Primer

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last time: proximal gradient descent

Consider the problem

min
x

g(x) + h(x)

with g, h convex, g differentiable, and h “simple” in so much as

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(x)

is computable. Proximal gradient descent: let x(0) ∈ Rn, repeat

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate
O(1/ε). Lastly we can accelerate this, to optimal rate O(1/

√
ε)

2

Outline

Today:

• Complexity of basic operations

• Solving linear systems

• Matrix factorizations

• Sensitivity analysis

• Alternative indirect methods

3

Complexity (flop counts) of basic operations

Flop (floating point operation):

• One addition, subtraction, multiplication, or division of two
floating point numbers

• Serves as a basic unit of computation

• We are interested in rough, not exact flop counts

Vector-vector operations: given a, b ∈ Rn:

• Addition, a+ b, costs n flops

• Scalar multiplication, c · a, costs n flops

• Inner product, aT b, costs 2n flops

Flops do not tell the whole story: setting every element of a to 1
costs 0 flops

4

Matrix-vector product: given A ∈ Rm×n, b ∈ Rn, consider Ab:

• In general, costs 2mn flops

• For s-sparse A, costs 2s flops

• For k-banded A ∈ Rn×n, costs 2nk flops

• For A =
∑r

i=1 uiv
T
i ∈ Rm×n, costs 2r(m+ n) flops

• For A ∈ Rn×n a permutation matrix, costs 0 flops

Matrix-matrix product: for A ∈ Rm×n, B ∈ Rn×p, consider AB:

• In general, costs 2mnp flops

• For s-sparse A, costs 2sp flops (less if B is also sparse)

Matrix-matrix-vector product: for A ∈ Rm×n, B ∈ Rn×p, c ∈ Rp,
consider ABc:

• Costs 2np+ 2mn flops if done properly

• Costs 2mnp+ 2mp flops if done improperly!

5

Solving linear systems

For nonsingular A ∈ Rn×n, consider solving linear system Ax = b,
i.e., computing x = A−1b:

• In general, costs about n3 flops—we’ll see more on this later

• For diagonal A, costs n flops:

x = (b1/a1, . . . bn/an)

• For lower triangular A (i.e., Aij = 0 for j > i), costs n2 flops:

x1 = b1/A11

x2 = (b2 −A21x1)/A22

...

xn = (bn −An,n−1xn−1 . . .−An1x1)/Ann

This is called forward substitution

• For upper triangular A, costs n2, by backward substitution

6

• For s-sparse A, often costs � n3 flops, but exact (worse-case)
flop counts are not known for abitrary sparsity structures

• For k-banded A, costs nk2 flops—more later

• For orthogonal A, we have A−1 = AT , and so x = AT b costs
2n2 flops

• For permutation A, again A−1 = AT , and so x = AT b costs 0
flops. Example:

A =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 and A−1 = AT =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

7

Matrix factorizations

As you’ve probably learned, we can solve Ax = b by, e.g., Gaussian
elimination. But instead it can be useful to factorize A:

A = A1A2 . . . Ak

and then compute x = A−1k . . . A−12 A−11 b. Usually k = 2 or 3, and

• Computing the factorization is expensive, about n3 flops

• Applying A−11 , . . . A−1k is cheaper, about n2 flops

• This is because A1, . . . Ak are structured: either orthogonal,
triangular, diagonal, or permutation matrices

This is useful when we want to solve Ax = b, Ax = b′, . . . many
linear systems in A. Also, if A undergoes a simple change, then an
old factorization for A can often be efficiently updated

8

Cholesky decomposition

If A ∈ Sn++ (symmetric, positive definite), then it has a Cholesky
decomposition:

A = LLT

with L ∈ Rn×n lower triangular. Can compute this in n3/3 flops

Once we have Cholesky factors, we solve Ax = b:

y = L−1b by forward substitution, n2 flops

x = (LT)−1y by back substitution, n2 flops

So solving costs 2n2 flops

Factorization and solve steps together cost n3/3 + 2n2 flops

9

Least squares problems and Cholesky

Now given y ∈ Rn, X ∈ Rn×p, consider the least squares problem:

min
β∈Rp

‖y −Xβ‖22

Assuming X has full column rank, solution is β̂ = (XTX)−1XT y.
How expensive?

• Compute XT y, in 2pn flops

• Compute XTX, in p2n flops

• Compute Cholesky of XTX, in p3/3 flops

• Solve (XTX)β = XT y, in 2p2 flops

Thus in total, about (n+ p/3)p2 flops (or np2 flops if n� p)

10

QR decomposition

If A ∈ Rm×n with m ≥ n, then it has a QR decomposition:

A = QR

with Q ∈ Rm×n orthogonal (i.e., QTQ = I), and R ∈ Rn×n upper
triangular. Can compute this in 2(m− n/3)n2 flops

• If A has rank n, then all diagonal elements of R are nonzero,
and the columns of Q form an orthonormal basis for col(A)

• If A has rank r, then the first r diagonal elements of R are
nonzero, and the first r columns of Q form a basis for col(A)

Key identity: ‖x‖22 = ‖QTx‖22 + ‖Q̃Tx‖22, where Q̃ ∈ Rm×(m−n)
completes the basis from Q

11

Least squares problems and QR

Now back to y ∈ Rn, X ∈ Rn×p full column rank, and the least
squares problem:

min
β∈Rp

‖y −Xβ‖22

Let X = QR be a QR decomposition. Then

‖y −QRβ‖22 = ‖QT y −Rβ‖22 + ‖Q̃T y‖22

Second term does not depend on β. So for least squares solution:

• Compute X = QR, in 2(n− p/3)p2 flops

• Compute QT y, in 2pn flops

• Solve Rβ = QT y, in p2 flops

Hence in total, about 2(n− p/3)p2 flops (or 2np2 flops if n� p)

12

Linear systems and sensitivity

Consider first the linear system Ax = b, for nonsingular A ∈ Rn×n.
The singular value decomposition of A:

A = UΣV T ,

where U, V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal with
elements σ1 ≥ . . . ≥ σn > 0

Even if A is full rank, it could be near a singular matrix B, i.e.,

dist(A,Rk) = min
rank(B)=k

‖A−B‖op

could be small, for some k < n. An easy SVD analysis shows that
dist(A,Rk) = σk+1. If this is small, then solving x = A−1b could
pose problems

13

From the lens of the SVD:

x = A−1b = V Σ−1UT b =

n∑
i=1

viu
T
i b

σi

We can see that if some σi > 0 is small (close to set of rank i− 1
matrices) then we could be in trouble

Precise sensitivity analysis: fix some F ∈ Rn×n, f ∈ Rn. Solve

(A+ εF)x(ε) = (b+ εf)

Theorem: The solution to the perturbed system satisfies

‖x(ε)− x‖22
‖x‖2

≤ κ(A)(ρA + ρb) +O(ε2)

where κ(A) = σ1/σn is the condition number of A, and ρA, ρb
are the relative errors ρA = |ε|‖F‖op/‖A‖op, ρb = |ε|‖f‖2/‖b‖2

14

Proof:

• By implicit differentiation,

dx

dε
(0) = A−1(f − Fx)

where we abbreviate x = x(0)

• Using a Taylor expansion around 0,

x(ε) = x+ εA−1(f − Fx) +O(ε)2

• Rearranging gives

‖x(ε)− x‖2
‖x‖2

≤ |ε|‖A−1‖op
(
‖f‖2
‖x‖2

+ ‖F‖op
)

+O(ε)2

Multiplying and dividing by ‖A‖op proves the result, since
κ(A) = ‖A‖op‖A−1‖op

15

Cholesky versus QR for least squares

Linear systems: worse conditioning means great sensitivity. What
about for least squares problems?

min
β∈Rp

‖y −Xβ‖22

• Recall Cholesky solves XTXβ = XT y. Hence we know that
sensitivity scales with κ(XTX) = κ(X)2

• Meanwhile, QR operates on X, never forms XTX, and can
show that sensitivity scales with κ(X) + ρLS · κ(X)2, where
ρLS = ‖y −Xβ̂‖22

Summary: Cholesky is cheaper (and uses less memory), but QR is
more stable when ρLS is small and κ(X) is large

16

Some advanced topics

• Updating matrix factorizations: can often be done efficiently
after a simple change. E.g., QR of A ∈ Rm×n can be updated
in O(m2) flops after adding or deleting a row, and O(mn)
flops after adding or deleting a column

• Underdetermined least squares: if X∈Rn×p and rank(X)<p,
the criterion ‖y −Xβ‖22 has infinitely many minimizers. One
with smallest `2 norm can be computed using QR

• Banded matrix factorizations: if A ∈ Sn++ is k-banded, then
we can compute its Choleksy decomposition in nk2/4 flops,
and apply it in 2nk flops

• Sparse matrix factorizations: this is in general a lot trickier,
and can require very complex pivoting schemes. Theoretical
analysis is loose, but practical performance is extremely good.
See Davis (2006), “Direct methods for sparse linear systems”
and SuiteSparse

17

Alternative indirect methods

So far we’ve been talking about direct methods for linear systems.
These return the exact solution (in perfect computing environment)

Indirect methods (iterative methods) produce x(k), k = 1, 2, 3, . . .
converging to a solution x. Most often used for very large, sparse
systems

• Jacobi iterations are the most basic approach. Suppose that
A ∈ Sn++, initialize x(0) ∈ Rn, and repeat for k = 1, 2, 3, . . .

x
(k+1)
i =

(
bi −

∑
j 6=i

Aijx
(k)
j

)
/Aii, i = 1, , . . . n

• Gauss-Seidl iterations are similar but always use most recent

iterates, i.e., use
∑

j<iAijx
(k+1)
j +

∑
j>iAijx

(k)
j instead of

above sum. Gauss-Seidl iterations always converge, but Jacobi
iterations do not

18

• Gradient descent on f(x) = 1
2x

TAx− bTx: this repeats

r(k) = b−Ax(k)

x(k+1) = x(k) + texact · r(k)

Since A ∈ Sn++, the criterion f is strongly convex, implying
linear convergence. But the contraction depends adversely on
κ(A). That is, gradient directions r(k) are not diverse enough
across iterations

• Conjugate gradient method replaces gradient directions above
with clever directions p(k) satisfying

p(k) ∈ span{Ap(1), . . . Ap(k−1)}⊥

Note these directions are constructed to be diverse. Conjugate
gradient method still uses one A multiplication per iteration,
and in principle, it takes n iterations or much less. In practice,
this is not true (numerical errors), and preconditioning is used

19

References and further reading

General:

• S. Boyd, Lecture notes for EE 264A, Stanford University,
Winter 2014-2015

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Appendix C

• G. Golub and C. van Loan (1996), “Matrix computations”,
Chapters 1–5, 10

Sparse numerical linear algebra/special systems:

• T. Davis (2006), “Direct methods for sparse linear systems”.
Find his state-of-the-art (and free) C++ package SuiteSparse
at http://faculty.cse.tamu.edu/davis/suitesparse.html

• N. Vishnoi (2013), “Lx = b; Laplacian solvers and their
applications”

20

http://faculty.cse.tamu.edu/davis/suitesparse.html

