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Last time: numerical linear algebra primer

In R™, rough flop counts for basic operations are as follows
e Vector-vector operations: n flops
e Matrix-vector multiplication: n? flops
e Matrix-matrix multiplication: n? flops
e Linear system solve: n> flops

Operations with banded or sparse matrices are cheaper by an order
of magnitude

Linear systems arise frequently in optimization, e.g., in minimizing
a quadratic function, e.g., in least squares problems
e Cholesky decomposition is cheaper, uses less memory, but is
more sensitive to numerical errors

e QR decomposition is more expensive, uses more memory, but
is more robust to numerical errors



Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B < min, f(x)

E.g., consider the following simple LP

min z+y

‘,'E7y

subject to T4y > 2
z,y =0

What's a lower bound? Easy, take B = 2

But didn't we get “lucky”?



Try again:

min
x’y
subject to

More generally:

min
x?y
subject to

z + 3y

r+y>2
z,y >0

pr+qy

rz+y>2
z,y >0

T+y>2
+ 2y >0
= z+4+3y=>2

Lower bound B = 2

a+b=p
a+c=q
a,b,c>0

Lower bound B = 2a, for any
a, b, c satisfying above



What's the best we can do? Maximize our lower bound over all
possible a, b, c:

121’1;1 pr +qY I(gl%{ 2a
subject to x+y>2 subject to a+b=p
z,y >0 a+c=gq
a,b,c>0
Called primal LP Called dual LP

Note: number of dual variables is number of primal constraints



Try another one:

%1’1;1 T + qy 12235 2c—b
subject to x>0 subject to a+3c=p
y<1 —b+c=gq
3z +y =2 a,b>0
Primal LP Dual LP

Note: in the dual problem, ¢ is unconstrained



Outline

Today:
e Duality in general LPs
e Max flow and min cut
e Second take on duality

e Matrix games



Duality for general form LP

Given ce R", Aec R™"™, be R™ G e R™", heR"

min L max —bTu—nTw
z€R™ ueR™ veR”™
subject to Ax =b subject to  —ATu—-GTv=¢
Gz <h v>0
Primal LP Dual LP

Explanation: for any u and v > 0, and « primal feasible,

ul'(Az —b) + 0T (G —h) <0, e,

(—ATu — GTU)T;U > by —hTo

So if c = —ATu — GTv, we get a bound on primal optimal value



Example: max flow and min cut

Soviet railway network (from Schrijver (2002), “On the history of
transportation and maximum flow problems”)



Given graph G = (V, E), define flow f;;,
(i,j) € E to satisfy:

o fZJ > 01 (Zm]) €E

o fij <cij, (4,j) €E

* Z fik = Z frjr k€ V\{s,t}

(i,k)EE (k,j)eEE

Max flow problem: find flow that maximizes total value of the flow
from s to t. l.e., as an LP:

max j
fERIPI Z s
(s.))EE
subject to  fi; >0, fij < ¢y forall (i,5) € E

Z fik = Z frj forall ke V\ {s,t}

(i,k)eE (k,j)eE



Derive the dual, in steps:

e Note that

Z ( — ajj fij + bij (fij — Cij))

(i,9)€eE

+ ) :Ek< o fu— Y, fk;j)SO

keV\{s,t} (i,k)eE (k.J)eE

for any a;j,b;; >0, (i,j) € E, and xy, k € V' \ {s,t}
e Rearrange as

> Mi(a,ba)fi; < > by

(i,J)€E (i,J)€E

where M;;(a,b, z) collects terms multiplying f;;
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e Want to make LHS in previous inequality equal to primal
Mgj = bs; — asj + x; want this =1
objective, i.e., ¢ M;; = by — ajz — x; want this = 0
M;j = bijj — a;j +x; —x; want this =0
e We've shown that
primal optimal value < Z bijcij,
(i,J)eE

subject to a, b, x satisfying constraints. Hence dual problem is
(minimize over a, b, z to get best upper bound):

Z bijcij

(i.g)ek
subject to bij+xj—x; >0 forall (4,j) € £
b>0,zs=1, 24 =0

min
beRIEI zeRIVI
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Suppose that at the solution, it just so happened that
xz; €{0,1} forall ieV

Cal A={i:2; =1} and B = {i: x; = 0}, note that s € A and
t € B. Then the constraints

bi]’ > Ti— Ty for (Z,j) ek, b>0
imply that b;; = 1 ifi € A and j € B, and 0 otherwise. Moreover,
the objective }; - bijci; is the capacity of cut defined by A, B

l.e., we've argued that the dual is

the LP relaxation of the min cut (fo
problem: W’Q
min Z bijcij O

beRIEIl zeRIVI

D)

(1,5)eE

subject to bij > x; — x;

bij, zi, xj € {0,1}
for all 7, 5
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Therefore, from what we know so far:

value of max flow <
optimal value for LP relaxed min cut <

capacity of min cut

Famous result, called max flow min cut theorem: value of max flow
through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a

phenomenon called strong duality

How often does this happen? More on this soon
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Another perspective on LP duality

min L max b —hTw
zeR™ ueR™ veR”
subject to Az =b subject to  —ATu—-GTv=c
Gx<h v>0
Primal LP Dual LP

Explanation # 2: for any u and v > 0, and x primal feasible
e >cle+ul (Az —b) + 0T (Gx — h) == L(z,u,v)

So if C' denotes primal feasible set, f* primal optimal value, then
for any u and v > 0,

f* > min L(z,u,v) > min L(z,u,v) := g(u,v)
zeC x
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In other words, g(u,v) is a lower bound on f* for any w and v > 0
Note that

—00 otherwise

Ty —nTy ife=—-ATu—GTo
g(u,v) =

Now we can maximize g(u,v) over u and v > 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)
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Example: mixed strategies for matrix games

Setup: two players, w0 Vs, Ny and a payout matrix P
R Game: if J chooses i and
| 1 2 ... n R chooses j, then J must
I ; 21 22 ];;Z pay R amount P;; (don't
feel bad for J—this can be
m Poi Pno ... Pon positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x: P(Jchoosesi)=uz;, i=1,...m

y: P(R chooses j)=y;, j=1,...n
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The expected payout then, from J to R, is

m n
Z Z xiyjPij = wTPy

i=1 j=1

Now suppose that, because J is wiser, he will allow R to know his
strategy x ahead of time. In this case, R will choose y to maximize
2T Py, which results in J paying off

max {zT Py : y >0, 1Ty =1} = max (PTz);
1=

1,.n

J’s best strategy is then to choose his distribution = according to
min max (PTz);
zeR™ i=1,..n
subject to x>0, 1Tz =1
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In an alternate universe, if R were somehow wiser than J, then he
might allow J to know his strategy y beforehand

By the same logic, R's best strategy is to choose his distribution y
according to

ma min (Py);
yelR)vE j=1,...m (Py);
subject to >0, 1Ty =1

Call R’s expected payout in first scenario f, and expected payout
in second scenario f3. Because it is clearly advantageous to know
the other player's strategy, fi > f3

But by Von Neumman’s minimax theorem: we know that f; = f3
. which may come as a surprise!
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Recast first problem as an LP:

min t
zeR™ teR
subject to x>0, 1Tz =1
PTy <t

Now form what we call the Lagrangian:

L(z,t,u,v,y) =t —ulz + vl — 1T2) + T (PTz — 1)
and what we call the Lagrange dual function:

g(u,v,y) = n;}gl L(z,t,u,v,y)

_{U ifl—1Ty=0 Py—u—vl=0

—o0 otherwise
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Hence dual problem, after eliminating slack variable u, is

max v

yeR” veR

subject to  y >0, 1Ty =1
Py>v

This is exactly the second problem, and therefore again we see that
strong duality holds

So how often does strong duality hold? In LPs, as we'll see, strong
duality holds unless both the primal and dual are infeasible
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