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Last time: duality in linear programs

Given ce R", Aec R™"™, be R™ G e R™", heR"

min ' max —bTu—nTw
z€R™ ueR™ veR”™
subject to Ax =b subject to  —ATu—-GTv=¢
Gz <h v>0
Primal LP Dual LP

Explanation: for any u and v > 0, and « primal feasible,

ul'(Az —b) + 0T (Gz — h) <0, e,

(—ATu — GTU)T;U > by —hTo

So if c = —ATu — GTv, we get a bound on primal optimal value



Explanation # 2: for any u and v > 0, and x primal feasible
e >ce 4+ ul (Az — b) + 01 (Gx — h) := L(z,u,v)

So if C' denotes primal feasible set, f* primal optimal value, then
for any u and v > 0,

f* > min L(z,u,v) > min L(z,u,v) := g(u,v)
xeC x

In other words, g(u,v) is a lower bound on f* for any w and v > 0.
Note that

—bTu—h"v fe=—-ATu—GTo
g(“? U) = .
—00 otherwise
This second explanation reproduces the same dual, but is actually

completely general and applies to arbitrary optimization problems
(even nonconvex ones)



Outline

Today:
e Lagrange dual function
e Langrange dual problem
e Weak and strong duality
e Examples

e Preview of duality uses



Lagrangian

Consider general minimization problem

min f(z)
subject to  hi(x) <0, i=1,...m
Ej(a:):O, jzl,. . T

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

T

L(z,u,v) ) + Zuz i( +Zvj€j(x)

=1

New variables u € R™, v € R", with u > 0 (implicitly, we define
L(z,u,v) = —oo for u < 0)



Important property: for any u > 0 and v,
f(z) > L(z,u,v) at each feasible x

Why? For feasible z,

m s

L(z,u,v) = f(z) + > wihi(z) + Y v; 45(x) < f(2)
5: e Solid line is f

e Dashed line is h, hence
feasible set ~ [—0.46, 0.46]

- e Each dotted line shows
of e L(z,u,v) for different
B choices of u > 0 and v

2T 05 0 05 1 (From B & V page 217)




Lagrange dual function

Let C' denote primal feasible set, f* denote primal optimal value.
Minimizing L(z,u,v) over all z gives a lower bound:

f* > min L(z,u,v) > min L(z,u,v) := g(u,v)
xeC x

We call g(u,v) the Lagrange dual function, and it gives a lower
bound on f* for any u > 0 and v, called dual feasible u, v

1.6

1.5

. .
e Dashed horizontal line is f »

e Dual variable A is (our ) 21
e Solid line shows g(\) 12
(From B & V page 217) H
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Example: quadratic program

Consider quadratic program:

i 1
min —2TQr +
z€R™ 2

subject to Ax=0b, x>0

where @ > 0. Lagrangian:

1
L(z,u,v) = ixTQm + e —ulz + 0T (Az — b)

Lagrange dual function:

1
g(u,v) = m}}@n L(z,u,v) = —§(c—u+ATv)TQ*1(c—u—i—ATv)—bTv
zeR"

For any u > 0 and any v, this is lower a bound on primal optimal
value f*



Same problem

. L r T
;2]%11 5% Qxr+c
subject to Ax=0b, x>0

but now @ > 0. Lagrangian:
1
L(z,u,v) = §xTQm + e —ulz + 0T (Az —b)
Lagrange dual function:

—(c—u+ ATv)TQT (c —u+ ATv) — bTw
g(u,v) = if c—u+ ATy L null(Q)

—00 otherwise

where QT denotes generalized inverse of Q. For any u > 0, v, and
c—u+ ATv L null(Q), g(u,v) is a nontrivial lower bound on f*



Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to z > 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u>0

Dual function g(u)
provides a bound on
f* for every u >0

primal

Largest bound this
gives us: turns out
to be exactly f* ...
coincidence?
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More on this later,
via KKT conditions
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Lagrange dual problem

Given primal problem

min f(x)
xT
subject to  hi(z) <0, i=1,...m
li(x) =0, j=1,...r
Our constructed dual function g(u,v) satisfies f* > g(u,v) for all
u > 0 and v. Hence best lower bound is given by maximizing
g(u,v) over all dual feasible u, v, yielding Lagrange dual problem:

max g(u,v)
v
subject to uw >0
Key property, called weak duality: if dual optimal value is g*, then
=g

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:
gu,v) = min {f(2) + 3 whi(z) + Y vts(a) |
i=1 j=1

= —max { - f(x) - i“”hi(w) - iwjm}

pointwise maximum of convex functions in (u,v)

l.e., g is concave in (u,v), and u > 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Example: nonconvex quartic minimization

Define f(x) = 2* — 5022 + 100z (nonconvex), minimize subject to
constraint x > —4.5

Primal Dual
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Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation
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Form of g is quite complicated:

g(u) = min F}(u) — 50F (u) + 100F;(u),
1= 14

where for i =1,2,3,

—a;
12.21/3

Fi(u) =

1
—~100-2/3

(432(100 — w) — (4322(100 — w)2 — 4 12009)/*) /3

anda; =1, ay = (—1 +iv/3)/2, a3 = (-1 — i\/3) /2

Without the context of duality it would be difficult to tell whether
or not g is concave ... but we know it must be!

(432(100%)7(4322(100%)2*4.12003)1/ 2) v
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Strong duality

Recall that we always have f* > g* (weak duality). On the other
hand, in some problems we have observed that actually

f* — g*
which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
hi,...hy, are convex, {1,...¥¢, are affine), and there exists at least
one strictly feasible z € R™, meaning

hi(z) <0,...hpn(x) <0 and li(x)=0,...4.(x) =0
then strong duality holds

This is a pretty weak condition. (Further refinement: only require
strict inequalities over functions h; that are not affine)
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LPs: back to where we started

For linear programs:
e Easy to check that the dual of the dual LP is the primal LP

e Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

e Apply same logic to its dual LP: strong duality holds if it is
feasible

e Hence strong duality holds for LPs, except when both primal
and dual are infeasible

In other words, we nearly always have strong duality for LPs
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Example: support vector machine dual

Given y € {—1,1}", X € R™™P, rows x1,...Ty,, recall the support
vector machine problem:

1, "
min — +C ;
6,ﬂ07§ 2“6”2 ;gl

subject to & >0,i=1,...n
yi(aTB+By)>1—&, i=1,...n

Introducing dual variables v, w > 0, we form the Lagrangian:
1 n n
i= i=

> wi(l =& - yila] B+ po))
i=1
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Minimizing over 3, 8o, & gives Lagrange dual function:

—%wTXXTw—}—lTw ifw=Cl—v, wly=0
gv,w) = .
—00 otherwise

where X = diag(y)X. Thus SVM dual problem, eliminating slack
variable v, becomes

1 -
max ——w' X XTw+1Tw
w 2

subject to 0<w<C1l, wly=0

Check: Slater's condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

B=XTw

This is not a coincidence, as we'll later via the KKT conditions
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Duality gap
Given primal feasible = and dual feasible u, v, the quantity

f(@) = g(u,v)

is called the duality gap between = and u,v. Note that

fl@) = 7 < fla) = g(u,v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u,v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(z) — g(u,v) < ¢, then we are guaranteed that f(z) — f* <e

Very useful, especially in conjunction with iterative methods ...
more dual uses in coming lectures
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Dual norms

Let ||z|| be a norm, e.g.,
o Ly norm: lafl, = (27 |2afP)V/P, for p > 1
e Trace norm: || X|ler = >0 04(X)

We define its dual norm ||z« as

|||+ = max 2Tz
[zl <1

Gives us the inequality |27 z| < ||z||||x]|«, like Cauchy-Schwartz.
Back to our examples,

e {, norm dual: (||z]|p)« = ||z|lq, where 1/p+1/qg =1
e Trace norm dual: (||X||tr)s = || X||op = Tmax(X)

Dual norm of dual norm: it turns out that ||z||. = ||z] ... we'll
see connections to duality (including this one) in coming lectures
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