
Proximal Newton Method

Ryan Tibshirani
Convex Optimization 10-725/36-725

1



Last time: primal-dual interior-point method

Given the problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

where f , hi, i = 1, . . .m are convex and smooth, we consider the
perturbed KKT conditions

∇f(x) +

m∑

i=1

ui∇hi(x) +AT v = 0

uihi(x) = −1/t, i = 1, . . .m

hi(x) ≤ 0, i = 1, . . .m, Ax = b

ui ≥ 0, i = 1, . . .m

where we have modified complementary slackness

2



Let’s express these conditions as r(x, u, v) = 0, where

r(x, u, v) =



∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− 1/t

Ax− b




and

h(x) =




h1(x)
. . .

hm(x)


 , Dh(x) =



∇h1(x)T

. . .
∇hm(x)T




In the primal-dual interior-point method, with y = (x, u, v) as the
current iterate, and ∆y = (∆x,∆u,∆v) the update direction, we
form a Newton step for the above nonlinear system

0 = r(y + ∆y) ≈ r(y) +Dr(y)∆y

and solve for ∆y, to get our update direction. Conclusion: similar
properties as the barrier method, but often faster

3



Outline

Today:

• Proximal gradient recap

• Proximal Newton method

• Backtracking line search

• Convergence analysis

• Notable examples

4



Reminder: proximal gradient descent

Recall that proximal gradient descent operates on a problem

min
x

g(x) + h(x)

where g is convex, smooth and h is convex, “simple”. We choose
initial x(0) and repeat for k = 1, 2, 3, . . .

x(k) = proxtk

(
x(k−1) − tk∇g(x(k−1))

)

where proxt(·) is the proximal operator associated with h,

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

• Difficulty of iterations is in applying prox, which only depends
on h (assuming that ∇g is computable)

• Proximal gradient descent enjoys same convergence rate as its
fully smooth version, hence useful when prox is efficient

5



Recall the motivation for proximal gradient: iteratively minimize a
quadratic expansion in g, plus original h

x+ = argmin
z

1

2t
‖x− t∇g(x)− z‖22 + h(z)

= argmin
z

∇g(x)T (z − x) +
1

2t
‖z − x‖22 + h(z)

The quadratic approximation here uses Hessian equal to (a scaled
version of) the identity 1

t I

A fundamental difference between gradient descent and Newton’s
method was that the latter also iteratively minimized quadratic
approximations, but these used the local Hessian of the function in
question

So what happens if we replace 1
t I in the above with ∇2g(x)?

6



Proximal Newton method

This leads us to the proximal Newton method. Now we must define

proxH(x) = argmin
z

1

2
‖x− z‖2H + h(z)

where ‖x‖2H = xTHx defines a norm, given a matrix H � 0. This
is a scaled proximal mapping. With H = 1

t I, we get back previous
definition

Starting with x(0), we repeat for k = 1, 2, 3, . . .

y(k) = proxHk−1

(
x(k−1) −H−1k−1∇g(x(k−1))

)

x(k) = x(k−1) + tk(y(k) − x(k−1))

Here Hk−1 = ∇2g(x(k−1)), and tk is a step size, which we choose
by backtracking line search (as in usual Newton)

7



Let’s check this is indeed minimizing a quadratic approximation of
g, plus h:

y = argmin
z

1

2
‖x−H−1∇g(x)− z‖2H + h(z)

= argmin
z

∇g(x)T (z − x) +
1

2
(z − x)TH(z − x) + h(z)

Notes:

• When h(z) = 0, we get back the usual Newton update

• For H � 0, can check that proxH(·) retains many of the nice
properties of (unscaled) proximal mappings (Lee et al. 2012).
E.g., it is well-defined, since the minimizer is unique

• Difficulty of prox has mostly to do with h, however, now the
Hessian of g also plays a role—the structure of this Hessian H
can make a difference

8



Backtracking line search

As with Newton’s method in fully smooth problems, pure step sizes
tk = 1, k = 1, 2, 3, . . . need not converge. We need to apply, say,
backtracking line search. Set parameters 0 < α ≤ 1/2, 0 < β < 1,
and let

v = proxH

(
x−H−1∇g(x)

)
− x

be the proximal Newton direction at a given iteration. Start with
t = 1, and while

f(x+ tv) > f(x) + αt∇g(x)T v + α
(
h(x+ td)− h(x)

)

we shrink t = βt. (Here f = g + h)

Note: this scheme is actually of a different spirit than the one we
studied for proximal gradient descent, as it avoids recomputing the
prox at each inner backtracking iteration

9



Wait ... does this even make sense?

Let’s back up. One of the main drivers behind proximal gradient
descent is that we can transform the problem

min
x

g(x) + h(x)

into a sequence of problems where g(x) is essentially replaced by
‖b− x‖22. This can be easy, but it depends on h

Now we have transformed into a sequence of problems where g(x)
is essentially replaced by bTx+ xTAx. For dense A, this seems like
it would rarely be easy, regardless of h ... That is, evaluating the
scaled prox

argmin
z

∇g(x)T (z − x) +
1

2
(z − x)TH(z − x) + h(z)

seems to be not an easy subproblem, for a generic Hessian H ...

10



All this is true, and the prox operator in proximal Newton is usually
extremely expensive, and one that we solve with an optimization
subroutine (e.g., for h(x) = ‖x‖1, prox is standard lasso problem)

What we should hope for: the convergence rate of prox Newton, in
terms of the number of iterations (prox evaluations) needed, is like
the usual Newton method. This ends up being true

Therefore, if we have a decent inner solver for the prox step, it can
be quite efficient to use proximal Newton (e.g., this is true with `1
regularized generalized linear models). But in general, prox Newton
is not to be applied without care

(Well-known implementations using prox Newton: glmnet, QUIC;
more on this later)

11



Convergence analysis

Following Lee et al. (2012), assume that f = g + h, where g, h are
convex and g is twice smooth. Assume further:

• mI � ∇2g � LI, and ∇2g Lipschitz with parameter M

• proxH(·) is exactly evaluable

Theorem: Proximal Newton method with backtracking line
search satisfies converges globally. Furthermore, for all k ≥ k0:

‖x(k) − x?‖2 ≤
M

2m
‖x(k−1) − x?‖22

Recall that this is called local quadratic convergence. After some
point, to get within f(x(k))− f? ≤ ε, we require O(log log(1/ε))
iterations. Note: each iteration uses scaled prox evaluation!

12



Proof sketch

• To prove global convergence, they show that at any step, the
backtracking exit condition will be satisfied by

t ≤ min
{

1,
2m

L
(1− α)

}

Use this to show that the update direction converges to zero,
which can only happen at the global minimum

• To prove local quadratic convergence, they show that for large
enough k, the pure step t = 1 eventually satisfies backtracking
exit condition. Therefore

‖x+ − x?‖2 ≤
1√
m
‖x+ − x?‖H

≤
∥∥proxH

(
x−H−1∇g(x)

)
− proxH

(
x? −H−1∇g(x?)

)∥∥
H

≤ M

2m
‖x− x?‖22

13



Glmnet and QUIC

Two notable examples of proximal Newton methods:

• glmnet (Friedman et al. 2009): applies proximal Newton to `1
regularized generalized linear models, inner probs solved using
coordinate descent

• QUIC (Hsiesh et al. 2011): applies proximal Newton to solve
graphical lasso problem, uses factorization tricks, inner probs
use coordinate descent

Both of these implementations are very widely used for their own
purposes. At the proper scale, these are close to state-of-the-art

General note: proximal Newton method will use far less evaluations
of (gradient of) g than proximal gradient. When these evaluations
are expensive, proximal Newton can win

14



Example: lasso logistic regression

Example from Lee et al. (2012): `1 regularized logistic regression,
FISTA (accelerated prox grad) versus spaRSA (spectral projected
gradient method) versus PN (prox Newton)

Problem with n = 5000, p = 6000, and a dense feature matrix X
PROXIMAL NEWTON-TYPE METHODS 21

0 100 200 300 400 500
10−6

10−4

10−2

100

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

0 100 200 300 400 500
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity
 

 
FISTA
SpaRSA
PN

Fig. 4.3: Logistic regression problem (gisette dataset). Proximal L-BFGS method
(L = 50) versus FISTA and SpaRSA.

0 100 200 300 400 500
10−6

10−4

10−2

100

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

0 50 100 150 200 250
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

Fig. 4.4: Logistic regression problem (rcv1 dataset). Proximal L-BFGS method (L
= 50) versus FISTA and SpaRSA.

Again, the regularization term ∥w∥1 promotes sparse solutions and λ balances sparsity
with goodness-of-fit.

We use two datasets: (i) gisette, a handwritten digits dataset from the NIPS
2003 feature selection challenge (n = 5000), and (ii) rcv1, an archive of categorized
news stories from Reuters (n = 47, 000).2 The features of gisette have been scaled
to be within the interval [−1, 1], and those of rcv1 have been scaled to be unit vectors.
λ matched the value reported in [30], where it was chosen by five-fold cross validation
on the training set.

We compare a proximal L-BFGS method with SpaRSA and the TFOCS imple-
mentation of FISTA (also Nesterov’s 1983 method) on problem (4.2). We plot relative
suboptimality versus function evaluations and time on the gisette dataset in Figure
4.3 and on the rcv1 dataset in Figure 4.4.

The smooth part of the function requires many expensive exp/log evaluations.
On the dense gisette dataset (30 million nonzero entries in a 6000×5000 design ma-

2These datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

Here g and ∇g require expensive exp or log evaluations; dominates
computational cost

15



Now problem with n = 542, 000, p = 47, 000, and sparse matrix X

PROXIMAL NEWTON-TYPE METHODS 21

0 100 200 300 400 500
10−6

10−4

10−2

100

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

0 100 200 300 400 500
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

Fig. 4.3: Logistic regression problem (gisette dataset). Proximal L-BFGS method
(L = 50) versus FISTA and SpaRSA.

0 100 200 300 400 500
10−6

10−4

10−2

100

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

0 50 100 150 200 250
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
FISTA
SpaRSA
PN

Fig. 4.4: Logistic regression problem (rcv1 dataset). Proximal L-BFGS method (L
= 50) versus FISTA and SpaRSA.

Again, the regularization term ∥w∥1 promotes sparse solutions and λ balances sparsity
with goodness-of-fit.

We use two datasets: (i) gisette, a handwritten digits dataset from the NIPS
2003 feature selection challenge (n = 5000), and (ii) rcv1, an archive of categorized
news stories from Reuters (n = 47, 000).2 The features of gisette have been scaled
to be within the interval [−1, 1], and those of rcv1 have been scaled to be unit vectors.
λ matched the value reported in [30], where it was chosen by five-fold cross validation
on the training set.

We compare a proximal L-BFGS method with SpaRSA and the TFOCS imple-
mentation of FISTA (also Nesterov’s 1983 method) on problem (4.2). We plot relative
suboptimality versus function evaluations and time on the gisette dataset in Figure
4.3 and on the rcv1 dataset in Figure 4.4.

The smooth part of the function requires many expensive exp/log evaluations.
On the dense gisette dataset (30 million nonzero entries in a 6000×5000 design ma-

2These datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

Here g and ∇g require expensive exp or log evaluations, but these
make up less of total cost, since X is sparse

16



Inexact prox evaluations

An important note: with proximal Newton, we essentially always
perform inexact prox evaluations (not so with proximal gradient)

Example from Lee et al. (2012): graphical lasso estimation, three
stopping rules for inner optimizations. Here n = 72 and p = 1255

20 J. LEE, Y. SUN, AND M. SAUNDERS

0 5 10 15 20 25
10−6

10−4

10−2

100

Function evaluations
R

el
at

iv
e 

su
bo

pt
im

al
ity

 

 
adaptive
maxIter = 10
exact

0 5 10 15 20
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
adaptive
maxIter = 10
exact

Fig. 4.1: Inverse covariance estimation problem (Estrogen dataset). Convergence
behavior of proximal BFGS method with three subproblem stopping conditions.

0 5 10 15 20 25
10−6

10−4

10−2

100

Function evaluations

R
el

at
iv

e 
su

bo
pt

im
al

ity

 

 
adaptive
maxIter = 10
exact

0 50 100
10−6

10−4

10−2

100

Time (sec)

R
el

at
iv

e 
su

bo
pt

im
al

ity
 

 
adaptive
maxIter = 10
exact

Fig. 4.2: Inverse covariance estimation problem (Leukemia dataset). Convergence
behavior of proximal BFGS method with three subproblem stopping conditions.

transition is characteristic of BFGS and other quasi-Newton methods with superlinear
convergence.

On both datasets, the exact stopping condition yields the fastest convergence
(ignoring computational expense per step), followed closely by the adaptive stopping
condition (see Figure 4.1 and 4.2). If we account for time per step, then the adaptive
stopping condition yields the fastest convergence. Note that the adaptive stopping
condition yields superlinear convergence (like the exact proximal BFGS method). The
third condition (stop after 10 iterations) yields only linear convergence (like a first-
order method), and its convergence rate is affected by the condition number of Θ̂. On
the Leukemia dataset, the condition number is worse and the convergence is slower.

4.2. Logistic regression. Suppose we are given samples x(1), . . . , x(m) with
labels y(1), . . . , y(m) ∈ {−1, 1}. We fit a logit model to our data:

minimize
w∈Rn

1

m

m∑

i=1

log(1 + exp(−yiw
T xi)) + λ ∥w∥1 . (4.2)

Conclusion is that 10 inner iterations is not enough to ensure fast
(quadratic convergence), but their adaptive stopping rule is

17



For usual (smooth) Newton method, inner problem is to minimize
g̃k−1(z) quadratic approximation to g about x(k−1). Stopping rules
based on

‖∇g̃k−1(z)‖2 ≤ ηk‖∇g(x(k−1))‖2
for a specifically chosen “forcing” sequence ηk, k = 1, 2, 3, . . .

For proximal Newton, Lee et al. (2012) advocate the analogy that
uses generalized gradients in place of gradients

‖Gf̃k−1/M
(z)‖2 ≤ ηk‖Gf/M (x(k−1))‖2

where f̃k−1 = g̃k−1 + h, and recall that m � ∇2g �MI. Setting

ηk =
{m

2
,
‖Gf̃k−2/M

(x(k−1))−Gf/M (x(k−1))‖2
‖Gf/M (x(k−2))‖2

}

they prove that inexact proximal Newton has local superlinear rate

18



Proximal quasi-Newton methods

For large problems, computing the Hessian is prohibitive. Proximal
quasi-Newton methods avoid exactly forming Hk−1 = ∇g(x(k−1))
at each step

• Lee et al. (2012) propose iteratively updating Hk−1 at each
step using BFGS-type rules. They show very strong empirical
performance, and prove local superlinear convergence

• Tseng and Yun (2009) consider smooth plus block separable
problems, and recommend approximating the Hessian in a
blockwise fashion, combined with block coordinate descent.
This can be very helpful because only small Hessians are ever
needed. They prove linear convergence

Note that quasi-Newton methods can not only be helpful when the
Hessian is expensive, but also when it is ill-conditioned: singular or
close to singular

19



Proximal Newton versus Tseng and Yun’s method

It is interesting to compare Proximal Newton for the problem

min
x

g(x) + h(x)

where h(x) =
∑B

b=1 hb(xb) separates over B blocks of coordinates,
to Tseng and Yun (2009). Their method: block proximal Newton
(they call it coordinate gradient descent, bad name!)

The distinction is: perform a quad approximation first, or second?

• Proximal Newton method replaces g(x+ ∆) with g̃(x+ ∆) =
∇g(x)T∆ + 1

2∆TH∆, and minimizes g̃(x+ ∆) + h(x+ ∆) to
find update ∆. Can find ∆ with block coordinate descent

• Tseng and Yun iterate, for each block b = 1, . . . B, replacing
smooth part with g̃b(xb + ∆b) = ∇bg(x)T∆b + 1

2∆T
b Hb∆b,

and minimize g̃b(xb + ∆b) + hb(xb + ∆b) to find update ∆b

for block b

20



What’s wrong with projected Newton?

Suppose that h = 1C(x), the indicator function of a convex set C.
I.e., consider the problem

min
x

g(x) subject to C

Recall that proximal gradient here reduces to projected gradient.
What about proximal Newton? Updates are

y = argmin
z∈C

1

2
‖x−H−1∇g(x)− z‖2H

= argmin
z∈C

∇g(x)T (z − x) +
1

2
(z − x)TH(z − x)

Note when H = I this a projection of x−∇g(x) onto C, but this
is not a projection in general! In fact, it is much more complicated.
Hence, projected Newton does not generally follow from proximal
Newton ... we will cover a way to fix this during advanced topics

21



References

• J. Friedman and T. Hastie and R. Tibshirani (2009),
“Regularization paths for generalized linear models via
coordinate descent”

• C.J. Hsiesh and M.A. Sustik and I. Dhillon and P. Ravikumar
(2011), “Sparse inverse covariance matrix estimation using
quadratic approximation”

• M. Patriksson (1998), “Cost approximation: a unified
framework of descent algorithms for nonlinear programs”

• J. Lee and Y. Sun and M. Saunders (2012), “Proximal
Newton-type methods for minimizing composite functions”

• P. Tseng and S. Yun (2009), “A coordinate gradient descent
method for nonsmooth separable minimization”

22


