
Case Studies: Sum of Norms Regularization
Problems

Ryan Tibshirani
Convex Optimization 10-725/36-725

1



Last time: review of optimization toolbox

So far we’ve learned about:

• First-order methods

• Newton methods

• Interior point methods

These comprise a good part of the core tools in optimization, and
are a big focus in this field

(Still, there’s a lot more out there. Before the course is over we’ll
see dual methods and ADMM, coordinate descent, fast stochastic
methods, projected Newton ...)

Given the number of available tools, it may seem overwhelming to
choose a method in practice. A fair question: how to know what
to use when?

2



It’s not possible to give a complete answer to this question. But
the big algorithms table from last time gave guidelines. It covered:

• Assumptions on criterion function

• Assumptions on constraint functions/set

• Ease of implementation (how to choose parameters?)

• Cost of each iteration

• Number of iterations needed

Other important aspects, that it didn’t consider: parallelization,
data storage issues, statistical interplay

Here, as an example, we walk through some of the high-level
reasoning for related but distinct regularized estimation problems

3



Sum of norms regularization

We will consider problems of the form

min
β

f(β) + λ

J∑

j=1

‖Djβ‖qj

where f : Rp → R is a smooth, convex function, Dj ∈ Rmj×p is a
penalty matrix, qj ≥ 1 is a norm parameter, for j = 1, . . . J . Also,
λ ≥ 0 is a regularization parameter

An obvious special case: the lasso fits into this framework, with

f(β) = ‖y −Xβ‖22

and J = 1, D = I, q = 1. To include an unpenalized intercept, we
just add a column of zeros to D

4



Outline

Today:

• Notable examples

• Algorithmic considerations

• Case studies





Back and forth

• Implementation tips

5



Fused lasso or total variation denoising, 1d

Special case: fused lasso or total variation denoising in 1d, where
J = 1, q = 1, and

D =




−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1


 , so ‖Dβ‖1 =

n−1∑

i=1

|βi − βi+1|

Now we obtain sparsity in adjacent differences β̂i − β̂i+1, i.e., we
obtain β̂i = β̂i+1 at many locations i

Hence, plotted in order of the locations i = 1, . . . n, the solution β̂
appears piecewise constant

6



Typically used in “signal approximator” settings, where β̂ estimates
(say) the mean of some observations y ∈ Rn directly. Examples:

Gaussian loss Logistic loss
f(β) = 1

2

∑n
i=1(yi − βi)2 f(β) =

∑n
i=1(−yiβi + log(1 + eβi))

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

●

●●●

●

●

●●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●●●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

7



Fused lasso or total variation denoising, graphs

Special case: fused lasso or total variation denoising over a graph,
G = ({1, . . . n}, E). Here D is |E| × n, and if e` = (i, j), then D
has `th row

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0)

so
‖Dβ‖1 =

∑

(i,j)∈E

|βi − βj |

Now at the solution, we get β̂i = β̂j
across many edges (i, j) ∈ E, so β̂ is
piecewise constant over the graph G

8



Example: Gaussian loss, f(β) = 1
2

∑n
i=1(yi − βi)2, 2d grid graph

3
4

5
6

7

Data (noisy image) Solution (denoised image)

9



Example: Gaussian loss, f(β) = 1
2

∑n
i=1(yi − βi)2, Chicago graph

Data (observed crime rates) Solution (estimated crime rates)

10



Fused lasso with a regressor matrix

Suppose X ∈ Rn×p is a predictor matrix, with structure present in
the relationships between its columns. In particular, suppose that
the columns have been measured over nodes of a graph

Consider J = 1, q = 1, fused lasso matrix D over graph, and

f(β) =
1

2

n∑

i=1

(yi − xTi β)2 or

f(β) =
n∑

i=1

(
− yixTi β + log(1 + exp(xTi β)

)

(where xi, i = 1, . . . n are the rows of X). Here we are performing
linear or logistic regression with estimated coefficients that will be
constant over regions of the graph (this reveals groups of related
predictors)

11



(a) fold 1 (b) fold 3 (c) fold 5 (d) fold 7 (e) fold 9 (f) overlap

Figure 4: Consistency of selected voxels in different trials of cross-validations. The results of 5 different folds of cross-validations are shown
in (a)-(e) and the overlapping voxels in all 10 folds are shown in (f). The top row shows the results for GFL and the bottom row shows the
results for L1. The percentages of the overlapping voxels were: GFL(66%) vs. L1(22%).

Table 1: Comparison of the accuracy of AD classification.

Task LR SVM LR+L1 LR+GFL
AD/NC 80.45% 82.71% 81.20% 84.21%

MCI 63.83% 67.38% 68.79% 70.92%

We compared GFL to logistic regression (LR), support
vector machine (SVM), and logistic regression with an
L1 regularizer. The classification accuracies obtained based
on a 10-fold cross validation (CV) are shown in Table 1,
which shows that GFL yields the highest accuracy in both
tasks. Furthermore, compared with other reported results,
our performance are comparable with the state-of-the-art.
In (Cheng, Zhang, and Shen 2012), the best performance
with MCI tasks is 69.4% but our method reached 70.92%.
In (Chu et al. 2012), a similar sample size is used as in our
experiments, the performance of our method with ADNC
tasks is comparable to or better than their reported results
(84.21% vs. 81-84%) whereas our performance with MCI
tasks is much better (70.92% vs. 65%).

We applied GFL to all the samples where the optimal pa-
rameter settings were determined by cross-validation. Figure
5 compares the selected voxels with non-structured sparsity
(i.e. L1), which shows that the voxels selected by GFL clus-
tered into several spatially connected regions, whereas the
voxels selected by L1 were more scattered. We considered
the voxels that corresponded to the top 50 negative �i’s as
the most atrophied voxels and projected them onto a slice.
The results show that the voxels selected by GFL were con-
centrated in hippocampus, parahippocampal gyrus, which
are believed to be the regions with early damage that are
associated with AD. By contrast, L1 selected either less crit-
ical voxels or noisy voxels, which were not in the regions
with early damage (see Figure 5(b) and 5(c) for details).
The voxels selected by GFL were also much more consistent
than those selected by L1, where the percentages of overlap-
ping voxels according to the 10-fold cross-validation were:

(a) (b) (c)

Figure 5: Comparison of GFL and L1. The top row shows the
selected voxels in a 3D brain model, the middle row shows the
top 50 atrophied voxels, and the bottom row shows the projec-
tion onto a brain slice. (a) GFL (accuracy=84.21%); (b) L1 (ac-
curacy=81.20%); (c) L1 (similar number of voxels as in GFL).

GFL=66% vs. L1=22%, as shown in Figure 4.

Conclusions
In this study, we proposed an efficient and scalable algo-
rithm for GFL. We demonstrated that the proposed algo-
rithm performs significantly better than existing algorithms.
By exploiting the efficiency and scalability of the proposed
algorithm, we formulated the diagnosis of AD as GFL. Our
evaluations showed that GFL delivered state-of-the-art clas-
sification accuracy and the selected critical voxels were well
structured.

2168

(From Xin et al. (2014), “Efficient generalized fused lasso and its
application to the diagnosis of Alzheimer’s disease”)

12



Algorithms for the fused lasso

Let’s go through our toolset, to figure out how to solve

min
β

f(β) + λ‖Dβ‖1

Subgradient method: subgradient of criterion is

g = ∇f(β) + λDTγ

where γ ∈ ∂‖x‖1 evaluated at x = Dβ, i.e.,

γi ∈
{
{sign

(
(Dβ)i

)
} if (Dβ)i 6= 0

[−1, 1] if (Dβ)i = 0
, i = 1, . . .m

Downside (as usual) is that convergence is slow. Upside is that g is
easy to compute (provided ∇f is): if S = supp(Dβ), then we let

g = ∇f(β) + λ
∑

i∈S
sign

(
(Dβ)i

)
·Di

13



Proximal gradient descent: prox operator is

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

This is not easy for a general difference operator D (compare this
to soft-thresholding, if D = I). Prox itself is the fused lasso signal
approximator problem, with a Gaussian loss!

Could try reparametrizing the term ‖Dβ‖1 to make it linear, while
introducing inequality constraints. We could then apply an interior
point method

But we will have better luck going to the dual problem. (In fact, it
is never a bad idea to look at the dual problem, even if you have a
good approach for the primal problem!)

14



Fused lasso dual problem

Our problems are

Primal : min
β

f(β) + λ‖Dβ‖1

Dual : min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Here f∗ is the conjugate of f . Note that u ∈ Rm (where m is the
number of rows of D) while β ∈ Rn

The primal and dual solutions β̂, û are linked by KKT conditions:

∇f(β̂) +DT û = 0, and

ûi ∈





{λ} if (Dβ̂)i > 0

{−λ} if (Dβ̂)i < 0

[−λ, λ] if (Dβ̂)i = 0

, i = 1, . . .m

Second property implies that: ûi ∈ (−λ, λ) =⇒ (Dβ̂)i = 0

15



Let’s go through our toolset, to think about solving dual problem

min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Note the eventually we’ll need to solve ∇f(β̂) = −DT û for primal
solution, and tractability of this depends on f

Proximal gradient descent: looks much better now, because prox is

proxt(u) = argmin
z

1

2t
‖u− z‖22 subject to ‖z‖∞ ≤ λ

is easy. This is projection onto a box [−λ, λ]m, i.e., prox returns ẑ
with

ẑi =





λ if ui > λ

−λ if ui < −λ
ui if ui ∈ [−λ, λ]

, i = 1, . . .m

16



Interior point method: rewrite dual problem as

min
u

f∗(−DTu) subject to −λ ≤ ui ≤ λ, i = 1, . . .m

These are just linear constraints, so we can easily form log barrier1

as in
min
u

t · f∗(−DTu) + φ(u)

where

φ(u) = −
m∑

i=1

(
log(λ− ui) + log(ui + λ)

)

We either solve above problem with Newton’s method, or take one
Newton step, and then increase t

How efficient are Newton updates?

1There could be extra constraints from the domain of f∗, e.g., this happens
when f is the logistic loss, so these add extra log barrier terms

17



Define the barrier-smoothed dual criterion function

F (u) = tf∗(−DTu) + φ(u)

Newton updates follow direction H−1g, where

g = ∇F (u) = −t ·D
(
∇f∗(−DTu)

)
+∇φ(u)

H = ∇2F (u) = t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

How difficult is it to solve a linear system in H?

• First term: if Hessian of the loss term ∇2f∗(v) is structured,
and D is structured, then often D∇2f∗(v)DT is structured

• Second term: Hessian of log barrier term ∇2φ(u) is diagonal

So it really depends critically on first term, i.e., on conjugate loss
f∗ and penalty matrix D

18



Putting it all together:

• Primal subgradient method: iterations are cheap (we sum up
rows of D over active set S), but convergence is slow

• Primal proximal gradient: iterations involve evaluating

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

which can be very expensive, convergence is medium

• Dual proximal gradient: iterations involve projecting onto a
box, so very cheap, convergence is medium

• Dual interior point method: iterations involve a solving linear
Hx = g system in

H = t ·D
(
∇2f∗(−DTu)

)
DT +∇2φ(u)

which may or may not be expensive, convergence is rapid

19



Case study: fused lasso, Gaussian or logistic signal
approximation

Suppose that we wish to solve, for D a difference operator over a
general graph,

min
β

1

2

n∑

i=1

(yi − βi)2 + λ‖Dβ‖1, or

min
β

n∑

i=1

(
− yiβi + log(1 + eβi)

)
+ λ‖Dβ‖1

Suppose further that we desire solution at a high level of accuracy,
otherwise, we notice undesired artifacts and bumps when plotting
β̂. What algorithm should we use?

Primal subgradient and primal proximal gradient are out (slow and
intractable, respectively)

20



As for dual algorithms, one can check that the conjugate f∗ has a
closed-form for both the Gaussian and logistic cases:

f∗(v) =
1

2

n∑

i=1

y2
i −

1

2

n∑

i=1

(yi + vi)
2 and

f∗(v) =

n∑

i=1

(
(vi + yi) log(vi + yi) + (1− vi − yi) log(1− vi − yi)

)

respectively. We also the have expressions for primal solutions

β̂ = y −DT û and

β̂i = −yi log
(
yi(D

T û)i
)
+ yi log

(
1− yi(DT û)i

)
, i = 1, . . . n

respectively

21



Dual proximal gradient descent admits very efficient iterations, as
it just projects u+ tD∇f∗(−DTu) onto a box, repeatedly. But it
takes far too long to converge to high accuracy; depending on the
graph, this can even be worse than usual, because of conditioning

●

●

●

●

●

●

●

●

20 50 100 200 500 1000 2000 5000

1e
+

03
1e

+
04

1e
+

05
1e

+
06

1e
+

07

Grid size

C
on

di
tio

n 
nu

m
be

r

(This shows condition numbers for a 2d grid graph ... one of the
better conditioned cases ... still not great!)

22



Importantly, ∇2f∗(v) is a diagonal matrix in both the Gaussian
and logistic cases:

∇2f∗(v) = I and

∇2f∗(v) = diag

(
1

vi + yi
+

1

1− vi − yi
, i = 1, . . .m

)

respectively. Therefore the Newton steps in a dual interior point
method involve solving a linear system Hx = g in

H = DA(u)DT +B(u)

where A(u), B(u) are both diagonal. This is very structured, D is
the difference operator over a graph; can be solved efficiently, in
close to O(n) flops

Hence, an interior point method on the dual problem is the way to
go: cheap iterations, and convergence to high accuracy is very fast

23



Recall example from our first lecture:

Dual interior point method
10 iterations

Dual proximal gradient
1000 iterations

24



Case study: fused lasso, linear or logistic regression

(How the story can suddenly change, with a tweak to the problem!)

Consider the same D, but now with a regression matrix X ∈ Rn×p
(rows xi, i = 1, . . . n), and losses

f(β) =
1

2

n∑

i=1

(yi − xTi β)2, or

f(β) =
n∑

i=1

(
− yixTi β + log(1 + exp(xTi β)

)

Assume that the predictor matrix X is arbitrary. Everything in the
dual is much more complicated now!

25



Denote by f(β) = h(Xβ) the loss. Our problems are

Primal : min
β

h(Xβ) + λ‖Dβ‖1

Dual : min
u,v

h∗(v)

subject to XT v +DTu = 0, ‖u‖∞ ≤ λ

Here h∗ is the conjugate of h. Note that we have u ∈ Rm, v ∈ Rp.
Furthermore, the primal and dual solutions β̂ and û, v̂ satisfy

∇h(Xβ̂)− v̂ = 0 or equivalently

XT∇h(Xβ̂) +DT û = 0

Computing β̂ from û requires solving a linear system in X, not
cheap for generic X

26



Dual proximal gradient descent has become intractable, because
the prox operator is

proxt(u, v) = argmin
XTw+DT z=0

1

2t
‖u− z‖22 +

1

2t
‖v − w‖22 + ‖u‖∞

This is finding the projection of (u, v) onto the intersection of a
plane and a (lower-dimensional) box

Dual interior point methods also don’t look nearly as favorable as
before, because the equality constraint

XT v +DTu = 0

must be maintained, so we augment the inner linear systems, and
this ruins their structure, since X is assumed to be dense

Primal subgradient method is still very slow. Must we use it?

27



In fact, for large and dense X, our best option is probably to use
primal proximal gradient descent. The gradient

∇f(β) = XT∇h(Xβ)

is easily computed via the chain rule, and the prox operator

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖Dz‖1

is not evaluable in closed-form, but it is precisely the same problem
we considered solving before: graph fused lasso with Gaussian loss,
and without regressors

Hence to (approximately) evaluate the prox, we run a dual interior
point method until convergence. We have freed ourselves entirely
from solving linear systems in X

28



Case study: 1d fused lasso, linear or logistic regression

Let’s turn to the chain graph in particular, i.e., the case where

D =




−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1




The prox function in the primal is

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ

n∑

i=1

|zi − zi+1|

This can be directly computed (!) using specialized approaches
such as dynamic programming2 or taut-string methods3 in O(n)
operations

2Johnson (2013), “A dynamic programming algorithm for the fused lasso
and L0-segmentation”

3Davies and Kovac (2001), “Local extremes, runs, strings, multiresolution”
29



How fast is this prox operation, say with dynamic programming?

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Problem size n

T
im

e 
(s

ec
on

ds
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●

DP prox
BD solve

Dynamic programming
versus

Banded matrix solve

In short, really fast! Hence, primal proximal gradient descent looks
especially appealing, because the primal prox is so efficient

30



Relative importance: dementia vs normal

0 20 40 60 80 100

trust03.3

digcor

sick03.2

grpsym09.1

pulse21

orthos27

race01.1

hctz06

gend01

early39

fear05.1

estrop39

newthg68.1

cdays59

race01.2

β̂..1: dementia vs normal

65 70 75 80 85 90 95 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

fear05.1
sick03.2
newthg68.1
early39
hctz06
grpsym09.1
orthos27
race01.1
gend01
trust03.3
pulse21
digcor
cdays59
estrop39
race01.2

C
oe

ffi
ci

en
ts

Age

Relative importance: death vs normal

0 20 40 60 80 100

whmile09.2

ltaai

anyone

diabada.3

nomeds06

exer59

hlth159.1

smoke.3

dig06

numcig59

hurry59.2

cis42

gend01

ctime27

digcor

β̂..2: death vs normal

65 70 75 80 85 90 95 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

ctime27
numcig59
cis42
diabada.3
hlth159.1
dig06
whmile09.2
nomeds06
anyone
exer59
ltaai
hurry59.2
smoke.3
gend01
digcor

C
oe

ffi
ci

en
ts

Age

(From Adhikari et al. (2015), “High-dimensional longitudinal
classification with the multinomial fused lasso”)

31



Case study: 1d fused lasso, logistic signal approximation

Here both primal proximal gradient and dual interior point method
are strong choices. How do they compare? Example, for n = 2000:

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e−03 1e−01 1e+01

0
20

0
40

0
60

0
80

0
10

00

lambda

pr
ox

 c
ou

nt

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

cold
warm

●●
●

●●

●

●

●

●

●●

●

●●
●

●●

●

●●
●●●

●

●●
●
●

●

●

●●

●●

●

●●

●●●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●●●

●●

●

●

●●

●
●

1e−03 1e−01 1e+01
40

60
80

10
0

lambda

N
ew

to
n 

co
un

t

●

●
●

●●
●
●

●

●

●●

●

●●
●

●●

●

●●●●●

●

●●
●
●

●

●●

●●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●

●●

●
●

●●

●
●

●

●

cold
warm

Primal prox gradient is better for large λ, dual interior point better
for small λ. Why this direction?

32



Primal : min
β

f(β) + λ‖Dβ‖1

Dual : min
u

f∗(−DTu) subject to ‖u‖∞ ≤ λ

Observe:

• Large λ: many components (Dβ̂)i = 0 in primal, and many
components ûi ∈ (−λ, λ) in dual

• Small λ: many components (Dβ̂)i 6= 0 in primal, and many
components |ûi| = λ in dual

When many (Dβ̂)i = 0, there are fewer “effective parameters” in
the primal optimization; when many |ûi| = λ, the same is true in
the dual

Hence, generally:

• Large λ: easier for primal algorithms

• Small λ: easier for dual algorithms

33



Case study: denser differencing operator D

Consider replacing fused lasso difference operator D with a denser
matrix, that gives differences of averages (e.g., think of differences
between patches of an image)

Primal prox is intractable, and dual interior point method has too
costly Newton steps

But, provided that we can form f∗ (and relate the primal and dual
solutions), dual proximal gradient still features efficient iterations:
the gradient computation D∇f∗(−DTu) is more expensive than it
would be if D were sparse, but still not anywhere as expensive as
solving a linear system in D

Its iterations simply repeat projecting u+ tD∇f∗(−DTu) onto the
box [−λ, λ]m, hence, especially if we do not need a highly accurate
solution, dual proximal gradient is the best method

34



Finally, consider a twist on this problem in which D is dense and
massive (many, many rows), and even fitting it in memory is hard

Depending on f and its gradient, primal subgradient method might
be the only feasible algorithm; recall the subgradient calculation

g = ∇f(β) + λ
∑

i∈S
sign

(
(Dβ)i

)
·Di

where S is the set of all i such that (Dβ)i 6= 0

If λ is large enough so that many (Dβ)i = 0, then we only need to
fit a small part of D in memory (or, read a small part of D from a
file) to perform subgradient updates

Combined with perhaps a stochastic trick in evaluating either part
of g above, this could be effective at large scale

35



Group lasso problems

Suppose predictors X = [X(1) X(2) . . . X(J)], split up into groups.
To achieve sparsity over groups rather than individual predictors,
we write β = (β(1), . . . β(J)), and solve the group lasso problem:

min
β=(β(1),...β(J))∈Rp

h(Xβ) + λ

J∑

j=1

wj‖β(j)‖2

This fits into our framework with qj = 2, and Dj being the matrix
that selects out group j (and multiplies by wj), for j = 1, . . . J

52 M.Yuan and Y. Lin

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

1 1

1 1

1

1

11

–1

–1

1

–1

–1

11

1

–1
–1

–1

–1–1 –1

–1

b2

b11 b11 b11

b12 b12
b12

b2 b2

b2b2

b111 b11

(b12)(b12)

1

–1

–1

b2

1 b11

1

–1

–1

1 b12

b11

1

–1

–1

1
b12

b11

1

–1

–1

1
b12

b11

1

–1

–1

1
b11 + b12 

b2

(b12)

1

–1

–1

1

–1

1
b11 + b12 

b2b2

1

b11 + b12 

2–1 2

2 2 2

Fig. 1. (a)–(d) l1-penalty, (e)–(h) group lasso penalty and (i)–(l) l2-penalty

be basis functions and the reproducing kernel of the functional space induced by the jth factor.
It is clear that expression (2.1) reduces to the lasso when p1 = . . .=pJ =1. The penalty function
that is used in expression (2.1) is intermediate between the l1-penalty that is used in the lasso
and the l2-penalty that is used in ridge regression. This is illustrated in Fig. 1 in the case that all
Kjs are identity matrices. Consider a case in which there are two factors, and the corresponding

(From Yuan and Lin (2006),
“Model selection and esti-
mation in regression with
grouped variables”)

Note: qj =∞, j = 1, . . . J will also work for group penalty

36



Example: sparse additive models. Suppose that we want to model
y = (y1, . . . yn) as a nonparametric function of some input data
z = (z1, . . . zn), where zi ∈ Rd, i = 1, . . . n and d is large

For each dimension j = 1, . . . d, we construct a matrix X(j) whose
columns contains basis functions (e.g., splines) evaluated over the
data z1, . . . zn; the coefficients β(j) index these basis functions

With the loss

h(Xβ) = ‖y −Xβ‖22 =

∥∥∥∥y −
J∑

j=1

X(j)β(j)

∥∥∥∥
2

2

we are fitting a nonparametric function of y on z, and selecting out
groups means selecting out relevant dimensions, among j = 1, . . . d

37



12 RAVIKUMAR, LAFFERTY, LIU, AND WASSERMAN

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10
12

14
C

p

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

pr
ob

. o
f c

or
re

ct
 re

co
ve

ry

0 10 20 30 40 50 60 70 80 90 110 130 150

p=128 p=256

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

2
4

l1=97.05

x1

m
1

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

2
4

6

l1=88.36

x2

m
2

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
2

4
6

l1=90.65

x3

m
3

0.0 0.2 0.4 0.6 0.8 1.0

−4
−2

2
4

6

l1=79.26

x4

m
4

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
2

4
6

zero

x5

m
5

0.0 0.2 0.4 0.6 0.8 1.0
−6

−4
−2

2
4

6

zero

x6
m

6

Fig 3. (Simulated data) Upper left: The empirical ℓ2 norm of the estimated components as
plotted against the regularization parameter λ; the value on the x-axis is proportional to∑

j
∥f̂j∥. Upper center: The Cp scores against the regularization parameter λ; the dashed

vertical line corresponds to the value of λ which has the smallest Cp score. Upper right:
The proportion of 200 trials where the correct relevant variables are selected, as a function
of sample size n. Lower (from left to right): Estimated (solid lines) versus true additive
component functions (dashed lines) for the first 6 dimensions; the remaining components
are zero.

(From Ravikumar et al. (2007), “Sparse additive models”)

38



Algorithms for the group lasso

Consider either the `2 or `∞ penalty on groups. Let’s walk through
our toolset

Primal subgradient method: easy, just slow (as usual)

Primal proximal gradient: this is pretty appealing. Gradient of the
smooth part is easy: XT∇h(Xβ), and the prox operator is

proxt(β) = argmin
z

1

2t
‖β − z‖22 +

J∑

j=1

wj‖β(j)‖2, or

proxt(β) = argmin
z

1

2t
‖β − z‖22 +

J∑

j=1

wj‖β(j)‖∞

Both of these can be computed in closed-form in O(n) operations,
with variants of group-wise shrinkage (check this!)

39



Primal interior point method: consider `∞ version. Reparametrize
the problem as:

min
β,z

h(Xβ) + λ

J∑

j=1

wjzj

subject to −zj ≤ β(j) ≤ zj , j = 1, . . . J

Now the barrier smoothed criterion is

F (β, z) = t · h(Xβ) + t · λ
J∑

j=1

wjzj −

J∑

j=1

pj∑

`=1

(
log(zj − β(j),`) + log(zj + β(j),`)

)

Important consideration: what is the structure of ∇2F (β, z)?

40



First consider the log barrier term

φ(β, z) = −
J∑

j=1

pj∑

`=1

(
log(zj − β(j),`) + log(zj + β(j),`)

)

Can see that ∇2φ(β, z) is block diagonal, when arranged properly.
The other terms in F (β, z) contribute only

[
tXT∇2h(Xβ)X 0

0 0

]

to the Hessian, and it is XT∇2h(Xβ)X that could cause trouble.
Would probably only want to use an interior point method here if
this was structured (say banded)

Note: `2 group penalties are more complicated under this approach

Lastly, how about dual algorithms? Exercise: try yourself and see!

41



Case study: very large group lasso

Suppose we want to fit a very large group lasso, e.g., think about a
sparse additive model, in a high dimension d

Interior point methods make no sense, because iterations are much
too costly (not enough structure in constructed basis matrix X)

Subgradient method is slow and really not much more cheaper (per
iteration) than proximal gradient, so there’s no real reason not to
use the latter

If n is itself huge, our best bet is stochastic proximal gradient, as

XT∇h(Xβ) =
n∑

i=1

xi · ∇ih(Xβ)

with xi, i = 1, . . . n being rows of X. We can apply the prox to
β − t∑i∈I ∇ih(Xβ)xi, for random subset I ⊂ {1, . . . n}

42



Case study: autoregressive group lasso

Consider an autoregressive setup over time: we regress the current
observation against groups of past observations. Roughly this is

yi ≈
∆∑

t=1

βtyi−t +

2∆∑

t=∆+1

βtyi−t + . . . +

J∆∑

t=(J−1)∆+1

βtyi−t

and with group lasso, we want to select relevant groups

Proximal gradient descent still looks favorable

But we have a banded predictor matrix X (each row composed of
past yi values), and interior point methods look much better than
they did before, since the Hessian has structure

43



Group fused lasso problems

A marriage of two of the last ideas is the group fused lasso. Again
we write β = (β(1), . . . β(J)), and we penalize differences between
subblocks of coeffcients, according to a graph:

min
β=(β(1),...β(J))∈Rp

f(β) + λ
∑

(i,j)∈E

‖β(i) − β(j)‖q

• As with the fused lasso, common graph choices are chains,
grids, or fully-connected graphs

• As with the group lasso, common norm choices are q = 2 or
q =∞

Example: segmenting a dynamical system linear model for human
motion, across time (next slide)

44



20 40 60 80 100 120 140 160 180 200

−100

−50

0

50

100

150

Time (0.1 seconds)

A
ng

le
 (

de
gr

ee
s)

20 40 60 80 100 120 140 160 180 200
0

10

20

30

Time (0.1 seconds)

||θ
(t

+
1)

−
θ(

t)
||

(From Wytock and Kolter (2014), “Probabilistic segmentation via total

variation regularization.”)

45



Example: convex clustering. Write y = (y(1), . . . y(n)), where each

y(i) ∈ Rd, i = 1, . . . n, and we want to cluster these points. We set
J = n groups, choose a loss

f(β) =

n∑

i=1

‖y(i) − β(i)‖22

and solve a group fused lasso problem with a complete graph that
joins each pair β(i), β(j), i.e., the penalty term is

∑

i<j

wij‖β(i) − β(j)‖2 or
∑

i<j

wij‖β(i) − β(j)‖∞

Note that this defines a clustering assignment, by looking at which
pairs satisfy β̂(i) = β̂(j) at the solution

(And a common choice is wij = exp(−γ‖y(i) − y(j)‖22), for all i, j)

46



Clusterpath: An Algorithm for Clustering using Convex Fusion Penalties

2. Optimization
2.1. A homotopy algorithm for the `1 solutions

For the problem involving the `1 penalty, we first note that
the problem is separable on dimensions. The cost function
f1(↵,X) can be written as

pX

k=1

2
41

2

nX

i=1

(↵ik �Xik)2 + �
X

i<j

wij |↵ik � ↵jk|

3
5

=

pX

k=1

f1(↵
k, Xk),

where ↵k 2 Rn is the k-th column from ↵. Thus, solving
the minimization with respect to the entire matrix X just
amounts to solving p separate minimization subproblems:

min
↵2Rn⇥p

f1(↵,X) =

pX

k=1

min
↵k2Rn

f1(↵
k, Xk).

For each of these subproblems, we can exploit the FLSA
path algorithm (Hoefling, 2009). This is a homotopy algo-
rithm similar to the LARS that exploits the piecewise lin-
earity of the path to very quickly calculate the entire set of
solutions (Efron et al., 2004).

In the LARS, variables jump in and out the active set, and
we must check for these events at each step in the path.
The analog in the FLSA path algorithm is the necessity to

norm = 1

X̄

X̄

norm = 2

X̄

X̄

norm =1

X̄

X̄

�
=

0
�

=
1

Figure 2. Some random normal data X 2 R10⇥2 were gener-
ated (white dots) and their mean X̄ is marked in the center. The
clusterpath (black lines) was solved using cvxmod for 3 norms
(panels from left to right) and 2 weights (panels from top to bot-
tom), which were calculated using wij = exp(��||Xi �Xj ||2).
For � = 0, we have wij = 1.

check for cluster splits, which occur when the optimal solu-
tion path requires unfusing a pair coefficients. Cluster splits
were not often observed on our experiments, but are also
possible for the `2 clusterpath, as illustrated in Figure 3.
The FLSA path algorithm checks for a split of a cluster
of size nC by solving a max-flow problem using a push-
relabel algorithm, which has complexity O(n3

C) (Cormen
et al., 2001). For large data sets, this can be prohibitive,
and for any clustering algorithm, splits make little sense.

One way around this bottleneck is to choose weights w in
a way such that no cluster splits are possible in the path.
The modified algorithm then only considers cluster joins,
and results in a complexity of O(n log n) for a single di-
mension, or O(pn log n) for p dimensions. One choice
of weights that results in no cluster splits is the identity
weights wij = 1, which we prove below.

2.2. The `1 clusterpath using wij = 1 contains no splits

The proof will establish a contradiction by examining the
necessary conditions on the optimal solutions during a clus-
ter split. We will need the following lemma.

Lemma 1. Let C = {i : ↵i = ↵C} ✓ {1, ..., n} be the
cluster formed after the fusion of all points in C, and let
wjC =

P
i2C wij . At any point in the regularization path,

the slope of its coefficient is given by

vC =
d↵C

d�
=

1

|C|
X

j 62C

wjC sign(↵j � ↵C). (5)

Proof. Consider the following sufficient optimality condi-
tion, for all i = 1, . . . , n:

0 = ↵i �Xi + �
X

j 6=i
↵i 6=↵j

wij sign(↵i � ↵j) + �
X

j 6=i
↵i=↵j

wij�ij ,

with |�ij |  1 and �ij = ��ji (Hoefling, 2009). We can
rewrite the optimality condition for all i 2 C:

0 = ↵C �Xi + �
X

j 62C

wij sign(↵C � ↵j) + �
X

i 6=j2C

wij�ij .

Furthermore, by summing each of these equations, we ob-
tain the following:

↵C = X̄C +
�

|C|
X

j 62C

wjC sign(↵j � ↵C),

where X̄C =
P

i2C Xi/|C|. Taking the derivative with
respect to � gives us the slope vC of the coefficient line for
cluster C, proving Lemma 1.

We will use Lemma 1 to prove by contradiction that cluster
splitting is impossible for the case wij = 1 for all i and j.

(From Hocking et al. (2011), “Clusterpath: an algorithm for clustering
using convex fusion penalties ”)

47



Algorithms for the group fused lasso

Primal proximal gradient requires evaluating the prox operator

proxt(β) = argmin
z=(z(1),...z(J))

1

2t

J∑

i=1

‖β(i)− z(i)‖22 +
∑

(i,j)∈E

‖z(i)− z(j)‖q

which is difficult, especially for general graphs

Let’s instead consider the dual, as we did for fused lasso. Define
the coefficient matrix B = [β(1), . . . β(J)], and note that we have

Primal : min
B

f(B) + λ‖DB‖1,q
Dual : min

U
f∗(−DTU) subject to ‖U‖∞,q∗ ≤ λ

where U = [u(1), . . . u(|E|)]

Dual proximal gradient requires a simple projection onto a set of
`q∗ balls and is thus an appealing approach for moderate accuracy

48



Interior point methods can be difficult to apply here even when the
loss function is simple. E.g., with Gaussian signal approximator loss

Primal : min
B

1

2
‖B − Y ‖2F + λ‖DB‖1,q

Dual : min
U

1

2
‖DTU‖2F − tr(Y TDTU)

subject to ‖U‖∞,q∗ ≤ λ
The Hessian for dual objective is Ip ⊗DDT but the log barrier for
q∗ = 1 or q∗ = 2 complicates this structure

Operator splitting (which we’ll discuss soon, with ADMM) provides
a general approach for problems of the form

f(x) + g(x)

possibly subject to constraints, by reducing them to evaluations of
the prox operators for f and g. This is very flexible, and applicable
to fused lasso, group lasso, and group fused lasso problems

49



What did we learn from this?

From generalized lasso study (really, these are general principles):

• There is no single best method: performance depends greatly
structure of penalty, conjugate of loss, desired accuracy level,
sought regularization level

• Duality is your friend: dual approaches offer complementary
strengths, move linear transformation from nonsmooth penalty
into smooth loss, and strive in different regularization regime

• Regressors complicate duality: presence of predictor variables
in the loss complicate dual relationship, but proximal gradient
will reduce this to a problem without predictors

• Recognizing easy subproblems: if there is a subproblem that is
specialized and efficiently solvable, then work around it

• Limited memory at scale: for large problems, active set and/or
stochastic methods may be only option

50



Your toolbox will only get bigger

There are still many algorithms to learn. E.g., for the problems we
considered, depending on the setting, we might instead use:

• Alternating direction method of multipliers

• (Block) coordinate descent methods

• Projected Newton methods

• Exact path-following methods

Remember, you don’t have to find/design the perfect optimization
algorithm, just one that will work well for your problem!

For completeness, recall tools like cvx4 and tfocs5, if performance
is not a concern, or you don’t want to expend programming effort

4Grant and Boyd (2008), “Graph implementations for nonsmooth convex
problems”, http://cvxr.com/cvx/

5Beckter et al. (2011), “Templates for convex cone problems with
applications to sparse signal recovery”, http://cvxr.com/tfocs/

51

http://cvxr.com/cvx/
http://cvxr.com/tfocs/


Implementation tips

Implementation details are not typically the focus of optimization
courses, because in a sense, implementation skills are under-valued

Still an extremely important part of optimization. Considerations:

• Speed

• Robustness

• Simplicity

• Portability

First point doesn’t need to be explained. Robustness refers to the
stability of implementation across various use cases. E.g., suppose
our graph fused lasso solver supported edge weights. It performs
well when weights are all close to uniform, but what happens under
highly nonuniform weights? Huge and small weights, mixed?

52



Simplicity and portability are often ignored. An implementation
with 20K lines of code may run fast, but what happens when a bug
pops up? What happens when you pass it on to a friend? Tips:

• A constant-factor speedup is probably not worth a much more
complicated implementation, especially if the latter is hard to
maintain, hard to extend

• Speed of convergence to higher accuracy may be worth a loss
of simplicity

• Write the code bulk in a low-level language (like C or C++),
so that it can port to R, Matlab, Python, Julia, etc.

• Don’t re-implement standard routines, this is often not worth
your time, and prone to bugs. Especially true for numerical
linear algebra routines!

53


