
Dual Methods and ADMM

Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Last time: case studies of regularization problems

We studied fused lasso problems:

min
β

f(β) + λ‖Dβ‖1

where f : Rn → R is a smooth, convex function and D ∈ Rm×n is
a difference operator. We also studied group lasso problems:

min
β

f(β) + λ

J∑
j=1

cj‖β(j)‖2

where β = (β(1), . . . β(j)) is a block decomposition. (And briefly,
group fused lasso problems)

We considered all algorithms we’ve learned so far applied to these
problems (or in some cases, their duals), and saw these algorithms
had different strengths, and were suitable for different situations

2

Reminder: conjugate functions

Recall that given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex f , then ∇f∗(y) = argmin
z

f(z)− yT z

3

Outline

Today:

• Dual (sub)gradient methods

• Dual decomposition

• Augmented Lagrangians

• ADMM

4

Dual (sub)gradient methods

What if we can’t derive dual (conjugate) in closed form, but want
to utilize dual relationship? Turns out we can still use dual-based
subradient or gradient methods

Example: consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = f∗(−ATu), note that
∂g(u) = −A∂f∗(−ATu), and recall

x ∈ ∂f∗(−ATu) ⇐⇒ x ∈ argmin
z

f(z) + uTAz

5

Therefore the dual subgradient method (for maximizing the dual
objective) starts with an initial dual guess u(0), and repeats for
k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

where tk are step sizes, chosen in standard ways

Recall that if f is strictly convex, then f∗ is differentiable, and so
we get dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

(difference is that each x(k) is unique, here). Proximal gradients
and acceleration carry through in similar manner

6

Covergence analysis

First recall that if f strongly convex with parameter d, then ∇f∗
Lipschitz with parameter 1/d

Proof: if f strongly convex and x is its minimizer, then

f(y) ≥ f(x) +
d

2
‖y − x‖2, for all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
d

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
d

2
‖xu − xv‖22

Adding these together, using Cauchy-Schwartz, and rearranging
shows that

‖xu − xv‖2 ≤
1

d
· ‖u− v‖2

7

Applying what we know about gradient descent: if f is strongly
convex with parameter d, then dual gradient ascent with constant
step size tk ≤ d converges at rate O(1/ε)

Is this a slow or fast rate, compared to what we would get out of
primal gradient descent? It’s actually essentially the same

• When f is strongly convex, primal gradient descent converges
at rate O(1/ε). But if we further assume that ∇f is Lipschitz,
then we get the linear rate O(log(1/ε))

• Note: the converse of the statement on the last slide is also
true: ∇f∗ being Lipschitz with parameter 1/d implies that f
is strongly convex with parameter d

• Hence assume f∗∗ = f . When f has Lipschitz gradient and is
strongly convex, the same is true about f∗, and dual gradient
ascent also converges at the linear rate O(log(1/ε))

8

Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) ∈ Rn divides into B blocks of variables, with
each xi ∈ Rni . We can also partition A accordingly

A = [A1, . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient:

x+ ∈ argmin
x

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+i ∈ argmin
xi

fi(xi) + uTAixi, i = 1, . . . B

i.e., minimization decomposes into B separate problems

9

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3

10

Example with inequality constraints:

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition (projected subgradient method) repeats for
k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

v(k) = u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

)
u(k) = (v(k))+

where (·)+ is componentwise thresholding, (u+)i = max{0, ui}

11

Price coordination interpretation (from Vandenberghe’s lecture
notes):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . .m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative

12

Augmented Lagrangian

Disadvantage of dual methods: require strong conditions to ensure
primal iterates converge to solutions. Convergence properties can
be improved by utilizing augmented Lagrangian. Transform primal:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

Clearly extra term (ρ/2) · ‖Ax− b‖22 does not change problem. Use
dual gradient ascent: repeat for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)

(When, e.g., A has full column rank, primal is guaranteed strongly
convex)

13

Notice step size choice tk = ρ, for all k, in dual gradient ascent.
Why? Since x(k) minimizes f(x) + (u(k−1))TAx+ ρ

2‖Ax− b‖
2
2

over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is the stationarity condition for the original primal problem;
can show under mild conditions that Ax(k) − b approaches zero
(i.e., primal iterates approach feasibility), hence in the limit KKT
conditions are satisfied and x(k), u(k) approach optimality

Advantage: much better convergence properties. Disadvantage:
lose decomposability! (Separability is compromised by augmented
Lagrangian ...)

14

Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: the best of
both worlds!

I.e., good convergence properties of augmented Lagrangians, along
with decomposability

Consider minimization problem

min
x

f1(x1) + f2(x2) subject to A1x1 +A2x2 = b

As before, we augment the objective

min
x

f1(x1) + f2(x2) +
ρ

2
‖A1x1 +A2x2 − b‖22

subject to A1x1 +A2x2 = b

15

Write the augmented Lagrangian as

Lρ(x1, x2, u) = f1(x1) + f2(x2) + uT (A1x1 +A2x2 − b) +
ρ

2
‖A1x1 +A2x2 − b‖22

Now ADMM repeats the steps, for k = 1, 2, 3, . . .

x
(k)
1 = argmin

x1
Lρ(x1, x

(k−1)
2 , u(k−1))

x
(k)
2 = argmin

x2
Lρ(x

(k)
1 , x2, u

(k−1))

u(k) = u(k−1) + ρ(A1x
(k)
1 +A2x

(k)
2 − b)

Note that the usual method of multipliers would have replaced the
first two steps by

(x
(k)
1 , x

(k)
2) = argmin

x1,x2
Lρ(x1, x2, u

(k−1))

16

Convergence guarantees

Under modest assumptions on f1, f2 (these do not require A1, A2

to be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = A1x
(k)
1 −A2x

(k)
2 − b→ 0 as

k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f1(x
(k)
1) + f2(x

(k)
2)→ f?, where f? is

the optimal primal criterion value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this can be guaranteed under more
assumptions

Convergence rate: not known in general, theory is currently being
developed, e.g., in Hong and Luo (2012), Nishihara et al. (2015).
Roughly, it behaves like a first-order method (or a bit faster)

17

Scaled form

It is often easier to express the ADMM algorithm in a scaled form,
where we replace the dual variable u by a scaled variable w = u/ρ.
In this parametrization, the ADMM steps are

x
(k)
1 = argmin

x1
f1(x1) +

ρ

2
‖A1x1 +A2x

(k−1)
2 − b+ w(k−1)‖22

x
(k)
2 = argmin

x2
f2(x2) +

ρ

2
‖A1x

(k)
1 +A2x2 − b+ w(k−1)‖22

w(k) = w(k−1) +A1x
(k)
1 +A2x

(k)
2 − b

Note that here the kth iterate w(k) is just given by a running sum
of residuals:

w(k) = w(0) +

k∑
i=1

(
A1x

(i)
1 +A2x

(i)
2 − b

)
18

Practicalities and tricks

Practical experience shows that ADMM usually obtains a relatively
accurate solution in a handful of iterations, but requires a very
large number of iterations for a highly accurate solution. This is
more evidence that it behaves like a first-order method

Choice of ρ can greatly influence practical convergence of ADMM:

• ρ too large → not enough emphasis on minimizing f1 + f2

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ that can be useful
in practice (but does not have convergence guarantees)

Like deriving duals, transforming a problem into that ADMM can
handle often requires a bit of trickery (and different forms can lead
to different algorithms)

19

Example: alternating projections

Consider finding a point in intersection of convex sets C,D ⊆ Rn,
i.e., solving

min
x

1C(x) + 1D(x)

To get this into ADMM form, we express it as

min
x,z

1C(x) + 1D(z) subject to x− z = 0

Each ADMM cycle involves two projections:

x(k) = argmin
x

PC
(
z(k−1) − w(k−1))

z(k) = argmin
z

PD
(
x(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

This is like the classical alternating projections method, but now
with a dual variable w. It is more efficient

20

Example: fused lasso regression

Given y ∈ Rn, X ∈ Rn×p, and a difference operator D ∈ Rm×p,
the fused lasso regression problem solves

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1

This computationally harder than the lasso problem (with D = I);
recall our study on algorithms for this problem. We can rewrite as

min
β∈Rp, α∈Rm

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to Dβ − α = 0

and ADMM gives us a simple algorithm for this problem:

β(k) = (XTX + ρDTD)−1
(
XT y + ρDT (α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(Dβ

(k) + w(k−1))

w(k) = w(k−1) +Dβ(k) − α(k)

21

Notes:

• The matrix XTX + ρDTD is assumed here to be invertible; if
not, replace the inverse by a pseudoinverse

• If we take its factorization (say QR), in O(p3) flops, then each
subsequent solve takes O(p2) flops

• The soft-thresolding operator St recall is defined as

[St(x)]j =


xj − t x > t

0 −t ≤ x ≤ t
xj + t x < −t

, j = 1, . . . p

• A different initial reparametrization, rather than Dβ = α, will
lead to a different ADMM algorithm

• Sometimes it is more efficient to make the substitution β = α
in the penalty term; this is favorable when h(x) = ‖Dx‖1 has
a fast proximal operator

22

Example: group lasso regression

Now consider the group lasso regression problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ

J∑
j=1

cj‖β(j)‖2

Rewrite as

min
β∈Rp, α∈Rp

1

2
‖y −Xβ‖22 + λ

J∑
j=1

cj‖α(j)‖2 subject to β − α = 0

andf ADMM updates become:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α
(k)
(j) = Rcjλ/ρ

(
β
(k)
(j) + w

(k−1)
(j)

)
, j = 1, . . . J

w(k) = w(k−1) + β(k) − α(k)

23

Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we take its factorization (say QR), in O(p3) flops, then each
subsequent solve takes O(p2) flops

• The shrinkage operator Rt is defined as

Rt(x) =

(
1− t

‖x‖2

)
+

x

• Similar steps can be performed for a sum of arbitrary norms of
subblocks, as long as can solve for the prox operator of the
individual norms

• An ADMM algorithm can also be developed for the case of
overlapping groups (which is otherwise quite a hard problem
to optimize!). See Boyd et al. (2010)

24

Consensus ADMM

Consider a problem of the form

min
x

B∑
i=1

fi(x)

The consensus ADMM approach begins by reparametrizing:

min
x1,...xB ,x

B∑
i=1

fi(xi) subject to xi = x, i = 1, . . . B

and this yields the decomposable ADMM updates:

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

x(k) =
1

B

B∑
i=1

(
x
(k)
i + w

(k−1)
i

)
w

(k)
i = w

(k−1)
i + x

(k)
i − x

(k), i = 1, . . . B

25

Write x̄ = 1
B

∑B
i=1 xi and similarly for other variables. Not hard to

see that w̄(k) = 0 for all iterations k ≥ 1

Hence ADMM steps can be simplified, by taking x(k) = x̄(k):

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x̄(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

w
(k)
i = w

(k−1)
i + x

(k)
i − x̄

(k), i = 1, . . . B

To reiterate, the xi, i = 1, . . . B updates here are done in parallel

Intuition:

• We try to minimize each fi(xi), and use ridge regularization
to pull each xi towards the average x̄

• If a variable xi is bigger than the average, then wi is increased

• So the ridge regularization in the next step pulls xi even closer

26

General consensus ADMM with regularization

Consider a problem of the form

min
x

B∑
i=1

fi(a
T
i x+ bi) + g(x)

For consensus ADMM, we again reparametrize:

min
x1,...xB ,x

B∑
i=1

fi(a
T
i xi + bi) + g(x) subject to xi = x, i = 1, . . . B

and this yields the decomposable ADMM updates:

x
(k)
i = argmin

xi
fi(a

T
i xi + bi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22,

i = 1, . . . B

x(k) = argmin
x

Bρ

2
‖x− x̄(k) − w̄(k−1)‖22 + g(x)

w
(k)
i = w

(k−1)
i + x

(k)
i − x

(k), i = 1, . . . B

27

Notes:

• It is no longer true that w(k) = 0, so ADMM steps do not
simplify as before

• To reiterate, the xi, i = 1, . . . B are done in parallel

• Each xi, i = 1, . . . B can be thought of as a loss minimization
on part of the data, with ridge regularization

• The x update is a proximal operation in regularizer g

• The w update drives the individual variables into consensus

• A different initial reparametrization (i.e., changing xi = x,
i = 1, . . . B to say, aTi xi + bi = x, i = 1, . . . B) will lead to a
different ADMM algorithm

See Boyd et al. (2010) for more details about consensus ADMM,
implementation tips, and more advanced strategies for splitting up
into different subproblems

28

References

• S. Boyd and N. Parikh and E. Chu and B. Peleato and J.
Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

• M. Hong and Z. Luo (2012), “On the linear convergence of
the alternating direction method of multipliers”

• R. Nishihara and L. Lessard and B. Recht and A. Packard and
M. Jordan (2015), “A general analysis of the convergence of
ADMM”

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

29

