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Last time: dual methods and ADMM

Dual methods operate on the dual of a problem that has the form

min
x

f(x) subject to Ax = b

for convex f . The dual (sub)gradient methods chooses an initial
u(0), and repeats for k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

where tk are step sizes, chosen in standard ways

• Pro: decomposability in the first step. Con: poor convergence
properties

• Can improve convergence by augmenting the Lagrangian, i.e.,
add term ρ/2‖Ax− b‖2 to the first step. Perform blockwise
minimization ⇒ ADMM
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Outline

Today:

• Coordinate descent

• Examples

• Implementation tricks

• Coordinate descent—literally

• Screening rules
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Coordinate descent

We’ve seen some pretty sophisticated methods thus far

Our focus today is a very simple technique that can be surprisingly
efficient and scalable: coordinate descent, or more appropriately
called coordinatewise minimization

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, then have
we found a global minimizer?

I.e., does f(x+ δei) ≥ f(x) for all δ, i ⇒ f(x) = minz f(z)?

(Here ei = (0, . . . , 1, . . . 0) ∈ Rn, the ith standard basis vector)
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A: Yes! Proof:

∇f(x) =

(
∂f

∂x1
(x), . . .

∂f

∂xn
(x)

)
= 0

Q: Same question, but for f convex (not differentiable) ... ?
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●

A: No! Look at the above counterexample

Q: Same question again, but now f(x) = g(x) +
∑n

i=1 hi(xi), with
g convex, differentiable and each hi convex ... ? (Nonsmooth part
here called separable)
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A: Yes! Proof: for any y,

f(y)− f(x) ≥ ∇g(x)T (y − x) +

n∑
i=1

[hi(yi)− hi(xi)]

=

n∑
i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)]︸ ︷︷ ︸
≥0

≥ 0

7



Coordinate descent

This suggests that for f(x) = g(x) +
∑n

i=1 hi(xi) (with g convex,
differentiable and each hi convex) we can use coordinate descent
to find a minimizer: start with some initial guess x(0), and repeat

x
(k)
1 ∈ argmin

x1
f
(
x1, x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
2 ∈ argmin

x2
f
(
x

(k)
1 , x2, x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
3 ∈ argmin

x2
f
(
x

(k)
1 , x

(k)
2 , x3, . . . x

(k−1)
n

)
. . .

x(k)
n ∈ argmin

x2
f
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , . . . xn

)
for k = 1, 2, 3, . . .

Note: after we solve for x
(k)
i , we use its new value from then on!
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Tseng (2001) proves that for such f (provided f is continuous on
compact set {x : f(x) ≤ f(x(0))} and f attains its minimum), any
limit point of x(k), k = 1, 2, 3, . . . is a minimizer of f1

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . n}

• Can everywhere replace individual coordinates with blocks of
coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

• For solving linear systems, recall this is exactly the difference
between Gauss-Seidel and Jacobi methods

1Using real analysis, we know that x(k) has subsequence converging to x?

(Bolzano-Weierstrass), and f(x(k)) converges to f? (monotone convergence)
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Example: linear regression

Consider linear regression

min
β∈Rp

1

2
‖y −Xβ‖22

where y ∈ Rn, and X ∈ Rn×p with columns X1, . . . Xp

Minimizing over βi, with all βj , j 6= i fixed:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y)

i.e., we take

βi =
XT
i (y −X−iβ−i)

XT
i Xi

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . .
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Coordinate descent vs gra-
dient descent for linear re-
gression: 100 instances
(n = 100, p = 20)
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Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever:

βi ←
XT
i (y −X−iβ−i)

XT
i Xi

=
XT
i r

‖Xi‖22
+ βi

where r = y −Xβ. Therefore each coordinate update takes O(n)
operations — O(n) to update r, and O(n) to compute XT

i r —
and one cycle requires O(np) operations, just like gradient descent
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Same example, but now
with accelerated gradient
descent for comparison

Is this contradicting the optimality of accelerated gradient descent?
I.e., is coordinate descent a first-order method?

No. It uses much more than first-order information
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Example: lasso regression

Now consider the lasso problem

min
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1

Note that the non-smooth part is separable: ‖β‖1 =
∑p

i=1 |βi|

Minimizing over βi, with βj , j 6= i fixed:

0 = XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

where si ∈ ∂|βi|. Solution is simply given by soft-thresholding

βi = Sλ/‖Xi‖22

(
XT
i (y −X−iβ−i)

XT
i Xi

)
Repeat this for i = 1, 2, . . . p, 1, 2, . . .
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Example: box-constrained regression

Consider box-constrainted linear regression

min
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖∞ ≤ s

Note this fits our framework, as 1{‖β‖∞ ≤ s} =
∑n

i=1 1{|βi| ≤ s}

Minimizing over βi with all βj , j 6= i fixed: same basic steps give

βi = Ts

(
XT
i (y −X−iβ−i)

XT
i Xi

)
where Ts is the truncating operator:

Ts(u) =


s if u > s

u if − s ≤ u ≤ s
−s if u < −s
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Example: support vector machines

A coordinate descent strategy can be applied to the SVM dual:

min
α∈Rn

1

2
αT X̃X̃Tα− 1Tα subject to 0 ≤ α ≤ C1, αT y = 0

Sequential minimal optimization or SMO (Platt 1998) is basically
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily

Recall the complementary slackness conditions

αi
(
1− ξi − (X̃β)i − yiβ0

)
= 0, i = 1, . . . n (1)

(C − αi)ξi = 0, i = 1, . . . n (2)

where β, β0, ξ are the primal coefficients, intercept, and slacks.
Recall that β = X̃Tα, β0 is computed from (1) using any i such
that 0 < αi < C, and ξ is computed from (1), (2)
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SMO repeats the following two steps:

• Choose αi, αj that do not satisfy complementary slackness,
greedily (using heuristics)

• Minimize over αi, αj exactly, keeping all other variables fixed

Using equality constraint,
reduces to minimizing uni-
variate quadratic over an
interval (From Platt 1998)

Note this does not meet separability assumptions for convergence
from Tseng (2001), and a different treatment is required

Many further developments on coordinate descent for SVMs have
been made; e.g., a recent one is Hsiesh et al. (2008)
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Coordinate descent in statistics and ML

History in statistics:

• Idea appeared in Fu (1998), and again in Daubechies et al.
(2004), but was inexplicably ignored

• Three papers around 2007, especially Friedman et al. (2007),
really sparked interest in statistics and ML communities

Why is it used?

• Very simple and easy to implement

• Careful implementations can be near state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

Examples: lasso regression, lasso GLMs (under proximal Newton),
SVMs, group lasso, graphical lasso (applied to the dual), additive
modeling, matrix completion, regression with nonconvex penalties
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Pathwise coordinate descent for lasso

Here is the basic outline for pathwise coordinate descent for lasso,
from Friedman et al. (2007), Friedman et al. (2009)

Outer loop (pathwise strategy):

• Compute the solution over a sequence λ1 > λ2 > . . . > λr of
tuning parameter values

• For tuning parameter value λk, initialize coordinate descent
algorithm at the computed solution for λk+1 (warm start)

Inner loop (active set strategy):

• Perform one coordinate cycle (or small number of cycles), and
record active set A of coefficients that are nonzero

• Cycle over coefficients in A until convergence

• Check KKT conditions over all coefficients; if not all satisfied,
add offending coefficients to A, go back one step
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Even when the solution is only desired at one value of λ, pathwise
strategy (λ1 > λ2 > . . . > λr = λ) is typically much more efficient
than directly performing coordinate descent at λ

Active set strategy takes advantage of sparsity; e.g., for very large
problems, coordinate descent for lasso is much faster than it is for
ridge regression

With these strategies in place (and a few more tricks), coordinate
descent can be competitve with fastest algorithms for `1 penalized
minimization problems

Freely available via glmnet package in MATLAB or R
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What’s in a name?

The name coordinate descent is confusing. For a smooth function
f , the method that repeats

x
(k)
1 = x

(k−1)
1 − tk,1 · ∇1f

(
x

(k−1)
1 , x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
2 = x

(k−1)
2 − tk,2 · ∇2f

(
x

(k)
1 , x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
3 = x

(k−1)
3 − tk,3 · ∇3f

(
x

(k)
1 , x

(k)
2 , x

(k−1)
3 , . . . x(k−1)

n

)
. . .

x(k)
n = x(k−1)

n − tk,n · ∇nf
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , . . . x(k−1)

n

)
for k = 1, 2, 3, . . . is also (rightfully) called coordinate descent. If
f = g+ h, where g is smooth and h is separable, then the proximal
version of the above is also called coordinate descent

These versions are often easier to apply that exact coordinatewise
minimization, but the latter makes more progress per step
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Convergence analyses

Theory for coordinate descent moves quickly. The list given below
is incomplete (may not be the latest and greatest). Warning: some
references below treat coordinatewise minimization, some do not

• Convergence of coordinatewise minimization for solving linear
systems, the Gauss-Seidel method, is a classic topic. E.g., see
Golub and van Loan (1996), or Ramdas (2014) for a modern
twist that looks at randomized coordinate descent

• Nesterov (2010) considers randomized coordinate descent for
smooth functions and shows that it achieves a rate O(1/ε)
under a Lipschitz gradient condition, and a rate O(log(1/ε))
under strong convexity

• Richtarik and Takac (2011) extend and simplify these results,
considering smooth plus separable functions, where now each
coordinate descent update applies a prox operation
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• Saha and Tewari (2013) consider minimizing `1 regularized
functions of the form g(β) + λ‖β‖1, for smooth g, and study
both cyclic coordinate descent and cyclic coordinatewise min.
Under (very strange) conditions on g, they show both methods
dominate proximal gradient descent in iteration progress

• Beck and Tetruashvili (2013) study cyclic coordinate descent
for smooth functions in general. They show that it achieves a
rate O(1/ε) under a Lipschitz gradient condition, and a rate
O(log(1/ε)) under strong convexity. They also extend these
results to a constrained setting with projections

• Nutini et al. (2015) analyze greedy coordinate descent (called
Gauss-Southwell rule), and show it achieves a faster rate than
randomized coordinate descent for certain problems

• General rates for cyclic coordinate descent / minimization are
not well-understood. Further unknowns: do these two behave
similarly? Are the aforementioned results tight?
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Graphical lasso

Consider a data matrix X ∈ Rn×p, whose rows x1, . . . xn ∈ Rp are
independent observations from N(0,Σ), with unknown covariance
matrix Σ. Want to estimate Σ

For Z ∼ N(0,Σ), normality theory tells us

Σ−1
ij = 0 ⇐⇒ Zi, Zj conditionally independent given Z`, ` 6= i, j

If we believe that many components are conditionally independent
given others (often reasonable for large p) then we want a sparse
estimate of Σ−1. Can get this by solving graphical lasso problem
(Banerjee et al. 2007, Friedman et al. 2007):

min
Θ∈Rp×p,Θ�0

− log det Θ + tr(SΘ) + λ‖Θ‖1

Minimizer Θ̂ is an estimate for Σ−1. (Note here S = XTX/n is
the empirical covariance matrix, and ‖Θ‖1 =

∑p
i,j=1 |Θij |)
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Example from Friedman et al. (2007), cell-signaling network:

Believed network Graphical lasso estimates

Example from Liu et al. (2010), hub graph simulation:

True graph Graphical lasso estimate
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Graphical lasso KKT conditions (stationarity):

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. Let W = Θ−1; we will solve in terms of W .
Note Wii = Sii + λ, because Θii > 0 at solution. Now partition:

W = Θ = S = Γ =[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

] [
S11 s12

s21 s22

] [
Γ11 γ12

γ21 γ22

]
where W11 ∈ R(p−1)×(p−1), w12 ∈ R(p−1)×1, and w21 ∈ R1×(p−1),
w22 ∈ R; same with others

Coordinate descent strategy: solve for w12, the last column of W
(note w22 is known), with all other columns fixed; then solve for
second-to-last column, etc., and cycle around until convergence.
(Solve for Θ along the way, so we don’t have to invert W to get Θ)
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Now consider (1, 2)-block of KKT conditions:

−w12 + s12 + λγ12 = 0

Because

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]
, we know that

w12 = −W11θ12/θ22. Substituting this into the above,

W11
θ12

θ22
+ s12 + λγ12 = 0

Letting β = θ12/θ22 and noting that θ22 > 0 at solution, this is

W11β + s12 + λρ = 0

where ρ ∈ ∂‖β‖1. What does this condition look like?
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These are exactly the KKT conditions for

min
β∈Rp−1

βTW11β + sT12β + λ‖β‖1

which is (basically) a lasso problem and can be itself solved quickly
via coordinate descent

From β we get w12 = −W11β, and set w21 = wT12. Then θ12, θ22

are obtained from

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]
, and

we set θ21 = θT12

The next step moves on to a different column of W , and so on;
hence we have reduced the graphical lasso problem to a repeated
sequence of lasso problems
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This coordinate descent approach for the graphical lasso, usually
called glasso algorithm (Friedman et al. 2007) is very efficient and
scales well

Meanwhile, people have noticed that using glasso algorithm, it can
happen that the objective function doesn’t decrease monotonically
across iterations — is this a bug?

No! The glasso algorithm makes a variable transformation and
solves in terms of coordinate blocks of W ; note that these are not
coordinate blocks of original variable Θ, so strictly speaking it is
not a coordinate descent algorithm

However, it can be shown that
glasso is doing coordinate ascent
on the dual problem (Mazumder
et al. 2011)
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Screening rules

In some problems, screening rules can be used in combination with
coordinate descent to further wittle down the active set. Screening
rules themselves have amassed a sizeable literature recently. Here
is an example, the SAFE rule for the lasso2:

|XT
i y| < λ− ‖Xi‖2‖y‖2

λmax − λ
λmax

⇒ β̂i = 0, all i = 1, . . . p

where λmax = ‖XT y‖∞ (the smallest value of λ such that β̂ = 0)

Note: this is not an if and only if statement! But it does give us a
way of eliminating features apriori, without solving the lasso

(There have been many advances in screening rules for the lasso,
but SAFE is the simplest, and was the first)

2El Ghaoui et al. (2010), “Safe feature elimination in sparse learning”
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Why is the SAFE rule true? Construction comes from lasso dual:

max
u∈Rn

g(u) subject to ‖XTu‖∞ ≤ λ

where g(u) = 1
2‖y‖

2
2 − 1

2‖y − u‖
2
2. Suppose that u0 is dual feasible

(e.g., take u0 = y · λ/λmax). Then γ = g(u0) is a lower bound on
the dual optimal value, so dual problem is equivalent to

max
u∈Rn

g(u) subject to ‖XTu‖∞ ≤ λ, g(u) ≥ γ

Now consider computing

mi = max
u∈Rn

|XT
i u| subject to g(u) ≥ γ, for i = 1, . . . p

Then we would have

mi < λ ⇒ |XT
i û| < λ ⇒ β̂i = 0, i = 1, . . . p

The last implication comes from the KKT conditions
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(From El Ghaoui et al. 2010)
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Another dual argument shows that

max
u∈Rn

XT
i u subject to g(u) ≥ γ

= min
µ>0

−γµ+
1

µ
‖µy −Xi‖22

=‖Xi‖2
√
‖y‖22 − 2γ −XT

i y

where the last equality comes from direct calculation

Thus mi is given the maximum of the above quantity over ±Xi,

mi = ‖Xi‖2
√
‖y‖22 − 2γ + |XT

i y|, i = 1, . . . p

Lastly, subtitute γ = g(y · λ/λmax). Then mi < λ is precisely the
safe rule given on previous slide
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Screening rules for graphical lasso

Graphical lasso computations can be significantly accelerated by
using a clever screening rule (this is analogous to the SAFE rules
for the lasso)

Mazumder et al. (2011), Witten et al. (2011) examine the KKT
conditions:

−Θ−1 + S + λΓ = 0

and conclude that Θ is block diagonal over variables C1, C2 if and
only if |Sij | ≤ λ for all i ∈ C1, j ∈ C2. Why?

• If Θ is block diagonal, then so is Θ−1, and thus |Sij | ≤ λ for
i ∈ C1, j ∈ C2

• If |Sij | ≤ λ for i ∈ C1, j ∈ C2, then the KKT conditions are
satisfied with Θ−1 block diagonal, so Θ is block diagonal

Exact same idea extends to multiple blocks. Hence group structure
in graphical lasso solution is just given by covariance thresholding
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