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Last time: coordinate descent
For the problem

mlng +Zh x;)

with g convex and smooth and each h; convex, can use coordinate
descent, which begins with an initial points z(9) and repeats:

xgk) € argmin f(z1, x;’f—l)’ xék_l), y _x%k—l))
1

‘”é’“) € argmin f(mgk)’mzwgk_n’”w%k:_l))
T2

ng) € argmin f( l‘gk), e ), .. a:n)
x2
for k=1,2,3,.... The above minimizations can also be replaced

by proximal gradient steps



Strengths:

o Relatively simple and can be surprisingly efficient and scalable
when updates are implemented carefully

e When combined with a pathwise approach, and when utilizing
active set tricks, takes advantage of low-dimensional structure
inherent in a problem

Weaknesses/unknowns:
e Not always applicable, when nonsmooth parts do not separate
e Not generically parallelizable, as updates are “one-at-a-time”

e Precise rates for cyclic coordinate descent not well-understood
(especially for exact coordinatewise minimization)



Conditional gradient method
Consider the constrained problem
min f(x) subject to z € C

where f is convex and smooth, and C' is convex. Recall projected
gradient descent chooses an initial z(©), repeats for k =1,2,3,...

) = Py (x(k_l) - tk.Vf(:c(k_l))
where P¢ is the projection operator onto the set C

This was a special case of proximal gradient descent, motivated by
a local quadratic expansion of f:

. _ _ 1 _
2 = Pc<argmm VAEE D) (= D) + oy — 1>||%>
)



The conditional gradient method, also known as the Frank-Wolfe
method, uses a local linear expansion of f:

s e argmin Vf(zF1)Ts
seC

Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is v, =2/(k+ 1), k=1,2,3,....
For any choice 0 < v, < 1, we see that 2(%) € C' by convexity. Can
also think of the update as

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds



(From Jaggi 2011)



Norm constraints

What happens when C' = {z : ||z|| <t} for a norm || - |7 Then

s € argmin Vf(z*")Ts
llsll<t

=—t- <argmax Vf(w(k'_l))T5>

lIsll<1

= —t- 0|V f (")

where || - ||« is the corresponding dual norm. In other words, if we
know how to compute subgradients of the dual norm, then we can
easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C' = {x : ||z|| < t}. Also often simpler or cheaper
than the prox operator for || - ||



Outline

Today:
e Examples
e Convergence analysis

e Properties and variants

Path following



Example: ¢; regularization

For the ¢1-regularized problem

min f(x) subject to ||z|; <t
xT

we have s*=1 ¢ —t9||V f(2*~1)||». Frank-Wolfe update is thus
ik_1 € argmax ‘Vif(az(kfl))’
i=1,...p
2®) = (1= y)a® D — it - sign (Vi f(@®) e,

Like greedy coordinate descent!

Note: this is a lot simpler than projection onto the ¢; ball, though
both require O(n) operations



Example: 7, regularization

For the ¢,-regularized problem

min f(z) subject to ||z, <t
T

for 1 < p < oo, we have s*=1) € —19||V f(x*~1)]|,, where p, q
are dual, i.e., 1/p+1/qg = 1. Claim: can choose
sgk_l) =—a- sign(Vfi(m(k_l))) . |Vfi(x(k_1))‘p/q, i=1,...n

where « is a constant such that ||s(*~1)||, =t (check this!), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler projection onto the /,, ball, for general p!
Aside from special cases (p = 1,2, 00), these projections cannot be
directly computed (must be treated as an optimization)
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Example: trace norm regularization

For the trace-regularized problem

m)}n f(X) subject to [| Xl <t

we have S#=1 ¢ |V f(X*=1)||op. Claim: can choose
S — .7

where u, v are leading left, right singular vectors of Vf(X(k_l))
(check this!), and then Frank-Wolfe updates are as usual

Note: this is a lot simpler and more efficient than projection onto
the trace norm ball, which requires a singular value decomposition!
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Constrained and Lagrange forms

Recall that solution of the constrained problem
mxin f(x) subject to ||z|| <t
are equivalent to those of the Lagrange problem
min f(z)+ Az

as we let the tuning parameters ¢ and A vary over [0, 0o0]. Typically
in statistics and ML problems, we would just solve whichever form
is easiest, over wide range of parameter values

So we should also compare the Frank-Wolfe updates under || - || to
the proximal operator of || - ||
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e /1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

e /, norm: Frank-Wolfe update computes raises each entry of
gradient to power and sums, in O(n) flops; proximal operator
not generally directly computable

e Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Many other regularizers yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)
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Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:

— Projected gradient
—— Conditional gradient
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We will see that Frank-Wolfe methods match convergence rates of
known first-order methods; but in practice they can be slower to
converge to high accuracy (note: fixed step sizes here, line search
would probably improve convergence)
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Duality gap

Frank-Wolfe iterations admit a very natural duality gap (truly, a

suboptimality gap):

max Vf(zF )T (1) — g)

seC
This is an upper bound on f(z(*~1) — f*
Proof: by the first-order condition for convexity

F(s) 2 f®D) + Vi ® T (s — 2 t7)
Minimizing both sides over all s € C' yields

= fE®Y) +min V)T (s - 207Y)

Rearranged, this gives the duality gap above
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Note that

max Vf(*"NT (0D — ) = Vf(aF=NT (k1) — sk-1)

seC

so this quantity comes directly from the Frank-Wolfe update. Why
do we call it“duality gap”? Rewrite original problem as

mxin f(z) + Io(x)
where I is the indicator function of C'. The dual problem is
max —f*(u) — I(~u)
where 7. is the support function of C. Duality gap at z,u is
Fl@) + [ (u) + IE(—u) > aTu+ 15 (—u)
Evaluated at 2 = 2(*=D 4 = Vf( ) this gives claimed gap
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Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

2
M= max 5 (f) - ) - V@) - 0)
y=(1—v)z+7s

(Above we restrict v € [0,1].) Note that M = 0 when f is linear.
The quantity f(y) — f(z) — Vf(z)T(y — ) is called the Bregman
divergence defined by f

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,... satisfies

2M

(k)y _ pr o 2
f() f§k+2

Number of iterations needed to have f(z(*)) — f* < eis O(1/¢)
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This matches the known rate for projected gradient descent when
V f is Lipschitz, but how do the assumptions compare?. In fact, if
V£ is Lipschitz with constant L then M < diam?(C) - L, where

diam(C) = max |z — s||2

To see this, recall that V f Lipschitz with constant L means

L
< Z

_ 2
< Sy - I3

fy) = f@) = V@) (y—2)

Maximizing over all y = (1 — )z + ~vs, and multiplying by 2/+2,

2
M < max — -
z,s,ycC v

y=(1—7)z+~s

L
S lly - x| = max Lz - s|l3

and the bound follows. Essentially, assuming a bounded curvature
is no stronger than what we assumed for proximal gradient
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Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate
is:

2
f@®) < f@hD) = pg(@®D) + Lt

Here g(z) = max,ec Vf(z)T (z — s) is the duality gap discussed
earlier. The rate follows from this inequality, using induction

Proof: write 7 = x(k), T = x(kfl), s = s(kfl), v =Y. Then
f@™) = flz+y(s—x))
2
< f(@) +9VF (@) (s —2) + 5 M
~2
= f(@) =g(x) + 5 M
Second line used definition of M, and third line the definition of g
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Affine invariance

Important property of Frank-Wolfe: its updates are affine invariant.

Given nonsingular A : R™ — R", define z = A2/, h(z') = f(Ax').
Then Frank-Wolfe on h(z’) proceeds as

s’ = argmin Vh(z')? 2
2€A-1C

()t = (1 —7)a’ + s

Multiplying by A reveals precisely the same Frank-Wolfe update as
would be performed on f(x). Even convergence analysis is affine
invariant. Note that the curvature constant M of h is

2
M = max ~ — (h(y') — h(z") = Vh(zT(y — x'))
/s’y eA"1C Y
y'=(1—7)z'+vs’

matching that of f, because Vh(z)T (v — 2') = Vf(2)T (y — x)

20



Inexact updates
Jaggi (2011) also analyzes inexact Frank-Wolfe updates. That is,

suppose we choose s*~1) so that

V f(a kD) T slk1) < mig Vf(akD)Ts 4 M;k s
se

where § > 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,..., and inaccuracy parameter § > 0,

satisfies o0/
Wy _ < 2M g
Fa®) - fr < 251+ 0)

Note: the optimization error at step k is M~y /2 - . Since v, — 0,

we require the errors to vanish
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Two variants

Two important variants of the conditional gradient method:
e Line search: instead of fixing v =2/(k+ 1), k=1,2,3,...,

use exact line search for the step sizes

Y, = argmin f(a:(kfl) + V(S(kfl) _ x(k—l)))
~v€[0,1]

ateach k£ =1,2,3,.... Or, we could use backtracking

e Fully corrective: directly update according to

) = argmin f(y) subject to y € conv{w(o), s s(k_l)}

Y

Can make much better progress, but is also quite a bit harder

Both variants have the same O(1/¢) complexity, measured by the
number of iterations
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Path following

Given the norm constrained problem
min f(x) subject to ||z] <t
x

the Frank-Wolfe algorithm can be used for path following, i.e., can

produce an (approximate) solution path z(t), ¢ > 0. Beginning at

to = 0 and 2*(0) = 0, we fix parameters €, m > 0, then repeat for
=1,2,3,...:
e Calculate

(1—-1/m)e

IV f(@(tk—1))«

and set &(t) = &(tx_1) for all t € (tx_1,tx)

e Compute z(tx) by running Frank-Wolfe at ¢ = ¢, terminating
when the duality gap is < ¢/m

ty =11 +

This is a simplification of the strategy given in Giesen et al. (2012)
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With this path following strategy, we are guaranteed that
f(@(t)) — f(x*(t)) < e forall t visited

i.e., we produce a (piecewise-constant) path with suboptimality
gap uniformly bounded by ¢, over all ¢

To see this, it helps to rewrite the Frank-Wolfe duality gap as

gu(@) = max Vf(@)" (¢~ 5) = VI(@)" 2 + V(@)

This is a linear function of ¢. Hence if g;(x) < ¢/m, then we can
increase ¢ until tT =t + (1 —1/m)e/||Vf(z)|«, because at this
value

g (@) = V(@) z +t|Vf(@)ll +e—e/m<e
i.e., the duality gap remains < ¢ for the same x, between ¢ and t*
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