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Last time: conditional gradient method

For the problem

min
x

f(x) subject to x ∈ C

where f is convex, smooth and C is a convex set, the conditional
gradient (Frank-Wolfe) method chooses an initial x(0) and repeats
for k = 1, 2, 3, . . .

s(k−1) ∈ argmin
s∈C

∇f(x(k−1))T s

x(k) = (1− γk)x(k−1) + γks
(k−1)

Here γk is a step size, either prespecified (as in γk = 2/(k + 1)) or
chosen by line search

For many problems, linear minimization over C is simpler or more
efficient than projection onto C, hence the appeal of Frank-Wolfe
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Stochastic gradient descent

Consider sum of functions

min
x

1

n

n∑

i=1

fi(x)

Gradient descent applied to this problem would repeat

x(k) = x(k−1) − tk ·
1

n

n∑

i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent (or incremental gradient
descent) repeats

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . n} is some chosen index at iteration k
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Notes:

• Typically we make a (uniform) random choice ik ∈ {1, . . . n}
• Also common: mini-batch stochastic gradient descent, where

we choose a random subset Ik ⊂ {1, . . . n}, of size b� n,
and update according to

x(k) = x(k−1) − tk ·
1

b

∑

i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, . . .

• In both cases, we are approximating the full graident by a
noisy estimate, and our noisy estimate is unbiased

E[∇fik(x)] = ∇f(x)

E
[

1

b

∑

i∈Ik

∇fi(x)

]
= ∇f(x)

The mini-batch reduces the variance by a factor 1/b, but is
also b times more expensive!
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Example: regularized logistic regression

Given labels yi ∈ {0, 1}, features xi ∈ Rp, i = 1, . . . n. Consider
logistic regression with ridge regularization:

min
β∈Rp

1

n

n∑

i=1

(
− yixTi β + log(1 + ex

T
i β)
)

+
λ

2
‖β‖22

Write the criterion as

f(β) =
1

n

n∑

i=1

fi(β), fi(β) = −yixTi β + log(1 + ex
T
i β) +

λ

2
‖β‖22

The gradient computation ∇f(β) =
∑n

i=1

(
yi − pi(β)

)
xi + λβ is

doable when n is moderate, but not when n is huge. Note that:

• One batch update costs O(np)

• One stochastic update costs O(p)

• One mini-batch update costs O(bp)
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Example with n = 10, 000, p = 20, all methods employ fixed step
sizes (diminishing step sizes give roughly similar results):
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What’s happening? Iterations make better progress as mini-batch
size b gets bigger. But now let’s parametrize by flops:
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Convergence rates

Recall that, under suitable step sizes, when f is convex and has a
Lipschitz gradient, full gradient (FG) descent satisfies

f(x(k))− f? = O(1/k)

What about stochastic gradient (SG) descent? Under diminishing
step sizes, when f is convex (plus other conditions)

E[f(x(k))]− f? = O(1/
√
k)

Finally, what about mini-batch stochastic gradient? Again, under
diminishing step sizes, for f convex (plus other conditions)

E[f(x(k))]− f? = O(1/
√
bk + 1/k)

But each iteration here b times more expensive ... and (for small
b), in terms of flops, this is the same rate
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Back to our ridge logistic regression example, we gain important
insight by looking at suboptimality gap (on log scale):

0 10 20 30 40 50

1e
−

12
1e

−
09

1e
−

06
1e

−
03

Iteration number k

C
rit

er
io

n 
ga

p 
fk

−
fs

ta
r

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

9



Recall that, under suitable step sizes, when f is strongly convex
with a Lipschitz gradient, gradient descent satisfies

f(x(k))− f? = O(ρk)

where ρ < 1. But, under diminishing step sizes, when f is strongly
convex (plus other conditions), stochastic gradient descent gives

E[f(x(k))]− f? = O(1/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

For a while, this was believed to be inevitable, as Nemirovski and
others had established matching lower bounds ... but these applied
to stochastic minimization of criterions, f(x) =

∫
F (x, ξ) dξ. Can

we do better for finite sums?
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Outline

Rest of today:

• Stochastic average gradient (SAG)

• SAGA (does this stand for something?)

• Many, many others
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Stochastic average gradient

Stochastic average gradient or SAG (Schmidt, Le Roux, Bach
2013) is a breakthrough method in stochastic optimization. Idea is
fairly simple:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = x(0), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick a random ik ∈ {1, . . . n} and
then let

g
(k)
ik

= ∇fi(x(k−1)) (most recent gradient of fi)

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
1

n

n∑

i=1

g
(k)
i
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Notes:

• Key of SAG is to allow each fi, i = 1, . . . n to communicate a
part of the gradient estimate at each step

• This basic idea can be traced back to incremental aggregated
gradient (Blatt, Hero, Gauchman, 2006)

• SAG gradient estimates are no longer unbiased, but they have
greatly reduced variance

• Isn’t it expensive to average all these gradients? (Especially if
n is huge?) This is basically just as efficient as stochastic
gradient descent, as long we’re clever:

x(k) = x(k−1) − tk ·
(
g
(k)
ik

n
−
g
(k−1)
ik

n
+

1

n

n∑

i=1

g
(k−1)
i

︸ ︷︷ ︸
old table average

)

︸ ︷︷ ︸
new table average
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SAG convergence analysis

Assume that f(x) = 1
n

∑n
i=1 fi(x), where each fi is differentiable,

and ∇fi is Lipschitz with constant L

Denote x̄(k) = 1
k

∑k−1
`=0 x

(`), the average iterate after k − 1 steps

Theorem (Schmidt, Le Roux, Bach): SAG, with a fixed step
size t = 1/(16L), and the initialization

g
(0)
i = ∇fi(x(0))−∇f(x(0)), i = 1, . . . n

satisfies

E[f(x̄(k))]− f? ≤ 48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

where the expectation is taken over the random choice of index
at each iteration
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Notes:

• Result stated in terms of the average iterate x̄(k), but also can

be shown to hold for best iterate x
(k)
best seen so far

• This is O(1/k) convergence rate for SAG. Compare to O(1/k)
rate for FG, and O(1/

√
k) rate for SG

• But, the constants are different! Bounds after k steps:

SAG :
48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

FG :
L

2k
‖x(0) − x?‖22

SG∗ :
L
√

5√
2k
‖x(0) − x?‖2 (*not a real bound, loose translation)

• So first term in SAG bound suffers from factor of n; authors
suggest smarter initialization to make f(x(0))− f? small (e.g.,
they suggest using result of n SG steps)
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Convergence analysis under strong convexity

Assume further that each fi is strongly convex with parameter m

Theorem (Schmidt, Le Roux, Bach): SAG, with a step size
t = 1/(16L) and the same initialization as before, satisfies

E[f(x(k))]− f? ≤
(

1−min
{ m

16L
,

1

8n

})k
·

(
3

2

(
f(x(0))− f?

)
+

4L

n
‖x(0) − x?‖22

)

More notes:

• This is linear convergence rate O(ρk) for SAG. Compare this
to O(ρk) for FG, and only O(1/k) for SG

• Like FG, we say SAG is adaptive to strong convexity (achieves
better rate with same settings)

• Proofs of these results not easy: 15 pages, computed-aided!
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Back to our ridge logistic regression example, SG versus SAG, over
30 reruns of these randomized algorithms:
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• SAG does well, but did not work out of the box; required a
specific setup

• Took one full cycle of SG (one pass over the data) to get β(0),
and then started SG and SAG both from β(0). This warm
start helped a lot

• SAG initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SG cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAG was very finicky; here now
hand-tuned to be about as large as possible before it diverges

• Authors of SAG conveyed that this algorithm will work the
best, relative to SG, for ill-conditioned problems (the current
problem not being ill-conditioned at all)
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Experiments from Schmidt, Le Roux, Bach (each plot is a different
problem setting):22 M. Schmidt, N. Le Roux, F. Bach
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Fig. 1 Comparison of di↵erent FG and SG optimization strategies. The top row gives
results on the quantum (left), protein (center) and covertype (right) datasets. The middle
row gives results on the rcv1 (left), news (center) and spam (right) datasets. The bottom
row gives results on the rcv1Full (left), sido (center), and alpha (right) datasets. This figure
is best viewed in colour.

performance as well as the minimum and maximum function values across 10
choices for the initial random seed. We can observe several trends across the
experiments:

– FG vs. SG: Although the performance of SG methods is known to be
catastrophic if the step size is not chosen carefully, after giving the SG
methods (SG and ASG) an unfair advantage (by allowing them to choose
the best step-size in hindsight), the SG methods always do substantially
better than the FG methods (AFG and L-BFGS ) on the first few passes
through the data. However, the SG methods typically make little progress
after the first few passes. In contrast, the FG methods make steady progress
and eventually the faster FG method (L-BFGS ) typically passes the SG
methods.

– (FG and SG) vs. SAG: The SAG iterations seem to achieve the best
of both worlds. They start out substantially better than FG methods,
often obtaining similar performance to an SG method with the best step-
size chosen in hindsight. But the SAG iterations continue to make steady
progress even after the first few passes through the data. This leads to
better performance than SG methods on later iterations, and on most data
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SAGA

SAGA (Defazio, Bach, Lacoste-Julien, 2014) is another recent
stochastic method, similar in spirit to SAG. Idea is again simple:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = x(0), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick a random ik ∈ {1, . . . n} and
then let

g
(k)
ik

= ∇fi(x(k−1)) (most recent gradient of fi)

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
(
g
(k)
ik
− g(k−1)ik

+
1

n

n∑

i=1

g
(k−1)
i

)
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Notes:

• SAGA gradient estimate g
(k)
ik
− g(k−1)ik

+ 1
n

∑n
i=1 g

(k−1)
i , versus

SAG gradient estimate 1
ng

(k)
ik
− 1

ng
(k−1)
ik

+ 1
n

∑n
i=1 g

(k−1)
i

• Recall, SAG estimate is biased; remarkably, SAGA estimate is
unbiased! Simple explanation, following a variance reduction
principle: consider a family of estimators

θα = α(X − Y ) + E(Y )

for E(X), where α ∈ [0, 1], and X,Y are presumed to be
correlated. We have

E(θα) = αE(X) + (1− α)E(Y )

Var(θα) = α2
(
Var(X) + Var(Y )− 2Cov(X,Y )

)

SAGA uses α = 1 (unbiased), SAG uses α = 1/n (biased)
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• SAGA basically matches strong convergence rates of SAG (for
both Lipschitz gradients, and strongly convex cases), but the
proofs here much simpler

• Another strength of SAGA is that it can extend to composite
problems of the form

min
x

1

n

m∑

i=1

fi(x) + h(x)

where each fi is smooth and convex, and h is convex and
nonsmooth but has a known prox. The updates are now

x(k) = proxh,tk

(
x(k−1)− tk ·

(
g
(k)
i − g

(k−1)
i +

1

n

n∑

i=1

g
(k−1)
i

))

• It is not known whether SAG is generally convergent under
such a scheme
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Back to our ridge logistic regression example, now adding SAGA to
the mix:
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• SAGA does well, but again it required somewhat specific setup

• As before, took one full cycle of SG (one pass over the data)
to get β(0), and then started SG, SAG, SAGA all from β(0).
This warm start helped a lot

• SAGA initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SG cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAGA was fine; seemingly on
par with tuning for SG, and more robust than tuning for SAG

• Interestingly, the SAGA criterion curves look like SG curves
(realizations being jagged and highly variable); SAG looks very
different, and this really emphasizes the fact that its updates
have much lower variance
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Many, many others

A lot of recent work revisiting stochastic optimization:

• SDCA (Shalev-Schwartz, Zhang, 2013): applies coordinate
ascent to the dual of ridge regularized problems, and uses
randomly selected coordinates. Effective primal updates are
similar to SAG/SAGA

• SVRG (Johnson, Zhang, 2013): like SAG/SAGA, but does not
store a full table of gradients, just an average, and updates
this occasionally

• There’s also S2GD (Konecny, Richtarik, 2014), MISO (Mairal,
2013), Finito (Defazio, Caetano, Domke, 2014), etc.

• Both the SAG and SAGA papers give very nice reviews and
discuss connections
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SAGA SAG SDCA SVRG FINITO
Strongly Convex (SC) 3 3 3 3 3

Convex, Non-SC* 3 3 7 ? ?
Prox Reg. 3 ? 3[6] 3 7

Non-smooth 7 7 3 7 7
Low Storage Cost 7 7 7 3 7
Simple(-ish) Proof 3 7 3 3 3

Adaptive to SC 3 3 7 ? ?

Figure 1: Basic summary of method properties. Question marks denote unproven, but not experimentally
ruled out cases. (*) Note that any method can be applied to non-strongly convex problems by adding a small
amount of L2 regularisation, this row describes methods that do not require this trick.

SAGA: midpoint between SAG and SVRG/S2GD

In [5], the authors make the observation that the variance of the standard stochastic gradient (SGD)
update direction can only go to zero if decreasing step sizes are used, thus preventing a linear conver-
gence rate unlike for batch gradient descent. They thus propose to use a variance reduction approach
(see [7] and references therein for example) on the SGD update in order to be able to use constant
step sizes and get a linear convergence rate. We present the updates of their method called SVRG
(Stochastic Variance Reduced Gradient) in (6) below, comparing it with the non-composite form
of SAGA rewritten in (5). They also mention that SAG (Stochastic Average Gradient) [1] can be
interpreted as reducing the variance, though they do not provide the specifics. Here, we make this
connection clearer and relate it to SAGA.

We first review a slightly more generalized version of the variance reduction approach (we allow the
updates to be biased). Suppose that we want to use Monte Carlo samples to estimate EX and that
we can compute efficiently EY for another random variable Y that is highly correlated with X . One
variance reduction approach is to use the following estimator ✓↵ as an approximation to EX: ✓↵ :=
↵(X�Y )+EY , for a step size ↵ 2 [0, 1]. We have that E✓↵ is a convex combination of EX and EY :
E✓↵ = ↵EX + (1� ↵)EY . The standard variance reduction approach uses ↵ = 1 and the estimate
is unbiased E✓1 = EX . The variance of ✓↵ is: Var(✓↵) = ↵2[Var(X) + Var(Y ) � 2 Cov(X, Y )],
and so if Cov(X, Y ) is big enough, the variance of ✓↵ is reduced compared to X , giving the method
its name. By varying ↵ from 0 to 1, we increase the variance of ✓↵ towards its maximum value
(which usually is still smaller than the one for X) while decreasing its bias towards zero.

Both SAGA and SAG can be derived from such a variance reduction viewpoint: here X is the SGD
direction sample f 0

j(x
k), whereas Y is a past stored gradient f 0

j(�
k
j ). SAG is obtained by using

↵ = 1/n (update rewritten in our notation in (4)), whereas SAGA is the unbiased version with ↵ = 1
(see (5) below). For the same �’s, the variance of the SAG update is 1/n2 times the one of SAGA,
but at the expense of having a non-zero bias. This non-zero bias might explain the complexity of
the convergence proof of SAG and why the theory has not yet been extended to proximal operators.
By using an unbiased update in SAGA, we are able to obtain a simple and tight theory, with better
constants than SAG, as well as theoretical rates for the use of proximal operators.

(SAG) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(�
k
j )

n
+

1

n

nX

i=1

f 0
i(�

k
i )

#
, (4)

(SAGA) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(�
k
j ) +

1

n

nX

i=1

f 0
i(�

k
i )

#
, (5)

(SVRG) xk+1 = xk � �

"
f 0

j(x
k) � f 0

j(x̃) +
1

n

nX

i=1

f 0
i(x̃)

#
. (6)

The SVRG update (6) is obtained by using Y = f 0
j(x̃) with ↵ = 1 (and is thus unbiased – we note

that SAG is the only method that we present in the related work that has a biased update direction).
The vector x̃ is not updated every step, but rather the loop over k appears inside an outer loop, where
x̃ is updated at the start of each outer iteration. Essentially SAGA is at the midpoint between SVRG
and SAG; it updates the �j value each time index j is picked, whereas SVRG updates all of �’s as
a batch. The S2GD method [8] has the same update as SVRG, just differing in how the number of
inner loop iterations is chosen. We use SVRG henceforth to refer to both methods.

3

(From Defazio, Bach, Lacoste-Julien, 2014)

• Are we approaching optimality with these methods? Agarwal
and Bottou (2014) recently proved nonmatching lower bounds
for minimizing finite sums

• Leaves three possibilities: (i) algorithms we currently have are
not optimal; (ii) lower bounds can be tightened; or (iii) upper
bounds can be tightened

• Very active area of research, this will likely be sorted out soon
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