
Nonconvex? NP!

(No Problem!)

Ryan Tibshirani
Convex Optimization 10-725/36-725

1

Beyond the tip?

2

Some takeaway points

• If possible, formulate task in terms of convex optimization —
typically easier to solve, easier to analyze

• Nonconvex does not necessarily mean nonscientific! However,
statistically, it does typically mean high(er) variance

• In more cases than you might expect, nonconvex problems can
be solved exactly (to global optimality)

3

What does it mean for a problem to be nonconvex?

Consider a generic optimization problem:

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

This is a convex problem if f , hi, i = 1, . . .m are convex, and `j ,
j = 1, . . . r are affine

A nonconvex problem is one of this form, where not all conditions
are met on the functions

But trivial modifications of convex problems can lead to nonconvex
formulations ... so we really just consider nonconvex problems that
are not trivially equivalent to convex ones

4

What does it mean to solve a nonconvex problem?

Nonconvex problems can have local minima, i.e., there can exist a
feasible x such that

f(y) ≥ f(x) for all feasible y such that ‖x− y‖2 ≤ R

but x is still not globally optimal. (Note: we proved that this could
not happen for convex problems)

Hence by solving a nonconvex problem, we mean finding the global
minimizer

We also implicitly mean doing it efficiently, i.e., in polynomial time

5

Addendum

This is really about putting together a list of cool problems, that
are suprisingly tractable ... hence there will be exceptions about
nonconvexity and/or requiring exact global optima

(Also, I’m sure that there are many more examples out there that
I’m missing, so I invite you to give me ideas / contribute!)

6

Outline

Rough categories for today’s problems:

• Classic nonconvex problems

• Eigen problems

• Graph problems

• Nonconvex proximal operators

• Discrete problems

• Infinite-dimensional problems

• Statistical problems

7

Classic nonconvex problems

8

Linear-fractional programs

A linear-fractional program is of the form

min
x∈Rn

cTx+ d

eTx+ f

subject to Gx ≤ h, eTx+ f > 0

Ax = b

This is nonconvex (but quasiconvex). Provided that this problem is
feasible, it is in fact equivalent to the linear program

min
y∈Rn, z∈R

cT y + dz

subject to Gy − hz ≤ 0, z ≥ 0

Ay − bz = 0, eT y + fz = 1

9

The link between the two problems is the transformation

y =
x

eTx+ f
, z =

1

eTx+ f

The proof of their equivlance is simple; e.g., see B & V Chapter 4

Linear-fractional problems show up in the study of solutions paths
for many common statistical estimation problems

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

The knots in the lasso path (val-
ues of λ at which a coefficient is
made nonzero) can be seen as the
optimal values of linear-fractional
programs

E.g., see Taylor et al. (2013), “In-
ference in adaptive regression via
the Kac-Rice formula”

10

Geometric programs

A monomial is a function f : Rn++ → R of the form

f(x) = γxa11 x
a2
2 · · ·xann

for γ > 0, a1, . . . an ∈ R. A posynomial is a sum of monomials,

f(x) =

p∑
k=1

γkx
ak1
1 xak22 · · ·xaknn

A geometric program of the form

min f(x)

subject to gi(x) ≤ 1, i = 1, . . .m

hj(x) = 1, j = 1, . . . r

where f , gi, i = 1, . . .m are posynomials and hj , j = 1, . . . r are
monomials. This is nonconvex

11

This is equivalent to a convex problem, via a simple transformation.
Given f(x) = γxa11 x

a2
2 · · ·xann , let yi = log xi and rewrite this as

γ(ey1)a1(ey2)a2 · · · (eyn)an = ea
T y+b

for b = log γ. Also, a posynomial can be written as
∑p

k=1 e
aTk y+bk .

With this variable substitution, and after taking logs, a geometric
program is equivalent to

min log

(
p0∑
k=1

ea
T
0ky+b0k

)

subject to log

(
pi∑
k=1

ea
T
iky+bik

)
≤ 0, i = 1, . . .m

cTj y + dj = 0, j = 1, . . . r

This is convex, recalling the convexity of soft max functions

12

Many interesting problems are geometric programs; see Boyd et al.
(2007), “A tutorial on geometric programming”, and also Chapter
8.8 of B & V book8.8 Floor planning 439

W

H

hi

wi

(xi, yi)

Ci

Figure 8.18 Floor planning problem. Non-overlapping rectangular cells are
placed in a rectangle with width W , height H, and lower left corner at (0, 0).
The ith cell is specified by its width wi, height hi, and the coordinates of its
lower left corner, (xi, yi).

We also require that the cells do not overlap, except possibly on their boundaries:

int (Ci ∩ Cj) = ∅ for i ̸= j.

(It is also possible to require a positive minimum clearance between the cells.) The
non-overlap constraint int(Ci ∩ Cj) = ∅ holds if and only if for i ̸= j,

Ci is left of Cj , or Ci is right of Cj , or Ci is below Cj , or Ci is above Cj .

These four geometric conditions correspond to the inequalities

xi + wi ≤ xj , or xj + wj ≤ xi, or yi + hj ≤ yj , or yj + hi ≤ yi, (8.32)

at least one of which must hold for each i ̸= j. Note the combinatorial nature of
these constraints: for each pair i ̸= j, at least one of the four inequalities above
must hold.

8.8.1 Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells,
one of the four possible relative positioning conditions, i.e., left, right, above, or
below. One simple method to specify these constraints is to give two relations on
{1, . . . , N}: L (meaning ‘left of’) and B (meaning ‘below’). We then impose the
constraint that Ci is to the left of Cj if (i, j) ∈ L, and Ci is below Cj if (i, j) ∈ B.
This yields the constraints

xi + wi ≤ xj for (i, j) ∈ L, yi + hi ≤ yj for (i, j) ∈ B, (8.33)

Extension to matrix world: Sra and Hosseini (2013), “Geometric
optimization on positive definite matrices with application to
elliptically contoured distributions”

13

Handling convex equality constraints

Given convex f , hi, i = 1, . . .m, the problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`(x) = 0

is nonconvex when ` is convex but not affine. A convex relaxation
of this problem is

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`(x) ≤ 0

If we can ensure that `(x∗) = 0 at any solution x∗ of the above
problem, then the two are equivalent

14

From B & V Exercises 4.6 and 4.58, e.g., consider the maximum
utility problem

max
x0,...xT∈R
b1,...bT+1∈R

T∑
t=0

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 0, . . . T

0 ≤ xt ≤ bt, t = 0, . . . T

where b0 ≥ 0 is fixed. Interpretation: xt is the amount spent of
your total available money bt at time t; concave function u gives
utility, concave function f measures investment return

This is not a convex problem, because of the equality constraint;
but can relax to

bt+1 ≤ bt + f(bt)− xt, t = 0, . . . T

without changing solution (think about throwing out money)

15

Problems with two quadratic functions
Consider the problem involving two quadratics

min
x∈Rn

xTA0x+ 2bT0 x+ c0

subject to xTA1x+ 2bT1 x+ c1 ≤ 0

Here A0, A1 need not be positive definite, so this is nonconvex.
The dual problem can be cast as

max
u∈R, v∈R

u

subject to

[
A0 + vA1 b0 + vb1

(b0 + vb1)
T c0 + vc1 − u

]
� 0

v ≥ 0

and (as always) is convex. Furthermore, strong duality holds. See
Appendix B of B & V, see also Beck and Eldar (2006), “Strong
duality in nonconvex quadratic optimization with two quadratic
constraints”

16

Eigen problems

17

Principal component analysis

Given a matrix X ∈ Rn×p, consider the nonconvex problem

min
R∈Rn×p

‖X −R‖2F subject to rank(R) = k

for some fixed k. The solution here is given by the singular value
decomposition of X: if X = UDV T , then

R̂ = UkDkV
T
k ,

where Uk, Vk are the first k columns of U, V , and Dk is the first k
diagonal elements of D. I.e., R̂ is the reconstruction of X from its
first k principal components

This is often called the Eckart-Young Theorem, established in
1936, but was probably known even earlier — see Stewart (1992),
“On the early history of the singular value decomposition”

18

Fantope

Another characterization of the SVD is via the following nonconvex
problem, given X ∈ Rn×p:

min
Z∈Sp

‖X −XZ‖2F subject to rank(Z) = k, Z is a projection

⇐⇒ max
Z∈Sp

〈XTX,Z〉 subject to rank(Z) = k, Z is a projection

The solution here is Ẑ = VkV
T
k , where the columns of Vk ∈ Rp×k

give the first k eigenvectors of XTX

This is equivalent to a convex problem. Express constraint set C as

C =
{
Z ∈ Sp : rank(Z) = k, Z is a projection

}
=
{
Z ∈ Sp : λi(Z) ∈ {0, 1} for i = 1, . . . p, tr(Z) = k

}

19

Now consider the convex hull Fk = conv(C):

Fk =
{
Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . p, tr(Z) = k

}
=
{
Z ∈ Sp : 0 � Z � I, tr(Z) = k

}
This is called the Fantope of order k. Further, the convex problem

max
Z∈Sp

〈XTX,Z〉 subject to Z ∈ Fk

admits the same solution as the original one, i.e., Ẑ = VkV
T
k

See Fan (1949), “On a theorem of Weyl conerning eigenvalues of
linear transformations”, and Overton and Womersley (1992), “On
the sum of the largest eigenvalues of a symmetric matrix”

Sparse PCA extension: Vu et al. (2013), “Fantope projection and
selection: near-optimal convex relaxation of sparse PCA”

20

Classical multidimensional scaling

Let x1, . . . xn ∈ Rp, and define similarities Sij = (xi− x̄)T (xj − x̄).
For fixed k, classical multidimensional scaling or MDS solves the
nonconvex problem

min
z1,...zn∈Rk

∑
i,j

(
Sij − (zi − z̄)T (zj − z̄)

)2

From Hastie et al. (2009), “The elements of statistical learning”
21

Let S be the similarity matrix (entries Sij = (xi − x̄)T (xj − x̄))

The classical MDS problem has an exact solution in terms of the
eigendecomposition S = UD2UT :

ẑ1, . . . ẑn are the rows of UkDk

where Uk is the first k columns of U , and Dk the first k diagonal
entries of D

Note: other very similar forms of MDS are not convex, and not
directly solveable, e.g., least squares scaling, with dij = ‖xi− xj‖2:

min
z1,...zn∈Rk

∑
i,j

(
dij − ‖zi − zj‖2

)2
See Hastie et al. (2009), Chapter 14

22

Generalized eigenvalue problems

Given B,W ∈ Sp, B,W � 0, consider the nonconvex problem

max
v∈Rn

vTBv

vTWv

This is a generalized eigenvalue problem, with exact solution given
by the top eigenvector of W−1B

This is important, e.g., in Fisher’s
discriminant analysis, where B is
the between-class covariance ma-
trix, and W the within-class covari-
ance matrix

See Hastie et al. (2009), Chapter 4

23

Graph problems

24

Min cut

Given a graph G = (V,E) with V = {1, . . . n}, two nodes s, t ∈ V ,
and costs cij ≥ 0 on edges (i, j) ∈ E. Min cut problem:

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all i, j,

xs = 0, xt = 1

Think of bij as the indicator that the edge (i, j) traverses the cut
from s to t; think of xi as an indicator that node i is grouped with
t. This nonconvex problem can be solved exactly using max flow
(max flow/min cut theorem)

25

A relaxation of min cut

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj for all i, j

b ≥ 0

xs = 0, xt = 1

This is an LP; recall that it is the dual of the max flow LP:

max
f∈R|E|

∑
(s,j)∈E

fsj

subject to fij ≥ 0, fij ≤ cij for all (i, j) ∈ E∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj for all k ∈ V \ {s, t}

Max flow min cut theorem tells us that the relaxed min cut is tight

26

Shortest paths
Given a graph G = (V,E), with edge costs ce, e ∈ E, consider the
shortest path problem, between two nodes s, t ∈ V

min
paths P

∑
e∈P

ce ⇐⇒ min
P=(e1,...er)

∑
e∈P

ce

subject to e1,1 = s, er,2 = t

ei,2 = ei+1,1, i = 1, . . . r − 1

Dijkstra’s algorithm solves this
problem (and more), from Dijk-
stra (1959), “A note on two prob-
lems in connexion with graphs”

Clever implementations run in
O(|E| log |V |) time; e.g., see
Kleinberg and Tardos (2005), “Al-
gorithm design”, Chapter 5

27

Nonconvex proximal operators

28

Hard-thresholding

One of the simplest nonconvex problems, given y ∈ Rn:

min
β∈Rn

n∑
i=1

(yi − βi)2 +

n∑
i=1

λi1{βi 6= 0}

Solution is given by hard-thresholding y,

βi =

{
yi if y2i > λi

0 otherwise
, i = 1, . . . n

and can be seen by inspection. Special case λi = λ, i = 1, . . . n,

min
β∈Rn

‖y − β‖22 + λ‖β‖0

Compare to soft-thresholding, prox operator for `1 penalty. Note:
changing the loss to ‖y −Xβ‖22 gives best subset selection, which
is NP hard for general X

29

`0 segmentation

Consider the nonconvex `0 segmentation problem

min
β∈Rn

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

1{βi 6= βi+1}

Can be solved exactly using dynamic programming, in two ways:
Bellman (1961), “On the approximation of curves by line segments
using dynamic programming”, and Johnson (2013) “A dynamic
programming algorithm for the fused lasso and L0-segmentation”

Johnson: more efficient,
Bellman: more general

Worst-case O(n2), but
with practical performance
more like O(n)

30

Tree-leaves projection

Given target u ∈ Rn, tree g on Rn, and label y ∈ {0, 1}, consider

min
z∈Rn

‖u− z‖22 + λ · 1{g(z) 6= y}

Interpretation: find z close to u, whose label under g is not unlike
y. Argue directly that solution is either ẑ = u or ẑ = PS(u), where

S = g−1(1) = {z : g(z) = y}

the set of leaves of g assigned label y. We simply compute both
options for ẑ and compare costs. Therefore problem reduces to
computing PS(y), the projection onto a set of tree leaves, a highly
nonconvex set

This appears as a subroutine of a broader algorithm for nonconvex
optimization; see Carreira-Perpinan and Wang (2012), “Distributed
optimization of deeply nested systems”

31

The set S is a union of axis-aligned boxes; projection onto any one
box is fast, O(n) operations

32

To project onto S, could just scan
through all boxes, and take the
closest

Faster: decorate each node of
tree with labels of its leaves, and
bounding box. Perform depth-
first search, pruning nodes

• that do not contain a leaf
labeled y, or

• whose bounding box is
farther away than the
current closest box

33

Discrete problems

34

Binary graph segmentation

Given y ∈ Rn, and a graph G = (V,E), V = {1, . . . n}, consider
binary graph segmentation:

min
β∈{0,1}n

n∑
i=1

(yi − βi)2 +
∑

(i,j)∈E

λij1{βi 6= βj}

Simple manipulation brings this problem to the form

max
A⊆{1,...n}

∑
i∈A

ai +
∑
j∈Ac

bj −
∑

(i,j)∈E, |A∩{i,j}|=1

λij

which is a segmentation problem that can be solved exactly using
min cut/max flow. E.g., Kleinberg and Tardos (2005), “Algorithm
design”, Chapter 7

35

E.g., apply recursively to get
a verison of graph hierarchical
clustering (divisive)

E.g., take the graph as a 2d
grid for image segmentation
(From http://ailab.snu.

ac.kr)

36

http://ailab.snu.ac.kr
http://ailab.snu.ac.kr

Discrete `0 segmentation

Now consider discrete `0 segmentation:

min
β∈{b1,...bk}n

n∑
i=1

(yi − βi)2 + λ

n−1∑
i=1

1{βi 6= βi+1}

where {b1, . . . bk} is some fixed discrete set. This can be efficiently
solved using classic (discrete) dynamic programming

Key insight is that the 1-dimensional structure allows us to exactly
solve and store

β̂1(β2) = argmin
β1∈{b1,...bk}

(y1 − β1)2 + λ · 1{β1 6= β2}︸ ︷︷ ︸
f1(β1,β2)

β̂2(β3) = argmin
β2∈{b1,...bk}

f1
(
β̂1(β2), β2

)
+ (y2 − β2)2 + λ · 1{β2 6= β3}

. . .

37

Algorithm:

• Make a forward pass over
β1, . . . βn−1, keeping a
look-up table; also keep a
look-up table for the optimal
partial criterion values
f1, . . . fn−1

• Solve exactly for βn

• Make a backward pass
βn−1, . . . β1, reading off the
look-up table

b1 b2 . . . bk
β1
β2
. . .
βn−1

b1 b2 . . . bk
f1
f2
. . .
fn−1

Requires O(nk) operations

38

Infinite-dimensional problems

39

Smoothing splines

Given pairs (xi, yi) ∈ R× R, i = 1, . . . n, smoothing splines solve

min
f

n∑
i=1

(
yi − f(xi)

)2
+ λ

∫ (
f (

k+1
2

)(t)
)2
dt

for a fixed odd k. The domain of minimization here is all functions
f for which

∫
(f (

k+1
2

)(t))2 dt <∞. Infinite-dimensional problem,
but convex (in function space)

Can show that the solution f̂ to the above problem is unique, and
given by a natural spline of order k, with knots at x1, . . . xn. This
means we can restrict our attention to functions

f =

n∑
j=1

θjηj

where η1, . . . ηn are natural spline basis functions

40

Plugging in f =
∑n

j=1 θjηj , transform smoothing spline problem
into finite-dimensional form:

min
θ∈Rn

‖y −Nθ‖22 + λθTΩθ

where Nij = ηj(xi), and Ωij =
∫
η
(k+1

2
)

i (t) η
(k+1

2
)

j (t) dt. The
solution is explicitly given by

θ̂ = (NTN + λΩ)−1NT y

and fitted function is f̂ =
∑n

j=1 θ̂jηj . With proper choice of basis

function (B-splines), calculation of θ̂ is O(n)

See, e.g., Wahba (1990), “Splines models for observational data”;
Green and Silverman (1994), “Nonparametric regression and
generalized linear models”; Hastie et al. (2009), Chapter 5

41

Locally adaptive regression splines

Given same setup, locally adaptive regression splines solve

min
f

n∑
i=1

(
yi − f(xi)

)2
+ λ · TV(f (k))

for fixed k, even or odd. The domain is all f with TV(f (k)) <∞,
and again this is infinite-dimensional but convex

Again, can show that a solution f̂ to above problem is given by a
spline of order k, but two key differences:

• Can have any number of knots ≤ n− k − 1 (tuned by λ)

• Knots do not necessarily coincide with input points x1, . . . xn

See Mammen and van de Geer (1997), “Locally adaptive
regression splines”; in short, these are statistically more adaptive
but computationally more challenging than smoothing splines

42

Mammen and van de Geer (1997) consider restricting attention to
splines with knots contained in {x1, . . . xn}; this turns the problem
into finite-dimensional form,

min
θ∈Rn

‖y −Gθ‖22 + λ

n∑
j=k+2

|θj |

where Gij = gj(xi), and g1, . . . gn is a basis for splines with knots

at x1, . . . xn. The fitted function is f̂ =
∑n

j=1 θ̂jgj

These authors prove that the solution of this (tractable) problem f̂
and of the original problem f∗ differ by

max
x∈[x1,xn]

|f̂(x)− f∗(x)| ≤ dk · TV
(
(f∗)(k)

)
·∆k

with ∆ the maximum gap between inputs. Therefore, statistically
it is reasonable to solve the finite-dimensional problem

43

E.g., a comparison, tuned to the same overall model complexity:

Smoothing spline
Finite-dimensional locally
adaptive regression spline

The left fit is easier to compute, but the right is more adaptive

(Note: trend filtering estimates are asymptotically equivalent to
locally adaptive regression splines, but much cheapter to compute)

44

Statistical problems

45

Sparse underdetermined linear systems

Suppose that X ∈ Rn×p has unit normed columns, ‖Xi‖2 = 1, for
i = 1, . . . n. Given y, consider the problem of finding the sparsest
sparse linear solution

min
β∈Rp

‖β‖0 subject to Xβ = y

This is nonconvex and known to be NP hard, for a generic X. A
natural convex relaxation is the `1 basis pursuit problem:

min
β∈Rp

‖β‖1 subject to Xβ = y

It turns out that there is a deep connection between the two; we
cite results from Donoho (2006), “For most large underdetermined
systems of linear equations, the minimal `1 norm solution is also
the sparsest solution”

46

As n, p grow large, p > n, there exists a threshold ρ (depending on
the ratio p/n), such that for most matrices X, if we solve the `1
problem and find a solution with:

• fewer than ρn nonzero components, then this is the unique
solution of the `0 problem

• greater than ρn nonzero components, then there is no solution
of the linear system with less than ρn nonzero components

(Here “most” is quantified precisely in terms of a probability over
matrices X, constructed by drawing columns of X uniformly at
random over the unit sphere in Rn)

There is a large and fast-moving body of related literature. See
Donoho et al. (2009), “Message-passing algorithms for compressed
sensing” for a nice review

47

Nearly optimal K-means

Given data points x1, . . . xn ∈ Rp, the K-means problem solves

min
c1,...cK∈Rp

1

n

n∑
i=1

min
k=1,...K

‖xi − ck‖22︸ ︷︷ ︸
f(c1,...cK)

This is NP hard, and is usually approximately solved using Lloyd’s
algorithm, run many times, with random starts

Careful choice of starting positions makes a big impact: running
Lloyd’s algorithm once, from c1 = s1, . . . cK = sK , for cleverly
chosen random s1, . . . sK , yields estimates ĉ1, . . . ĉK satisfying

E
[
f(ĉ1, . . . ĉK)

]
≤ 8(log k + 2) · min

c1,...cK∈Rp
f(c1, . . . cK)

48

See Arthur and Vassilvitskii (2007), “k-means++: The advantages
of careful seeding”. In fact, their construction of s1, . . . sK is very
simple:

• Begin by choosing s1 uniformly at random among x1, . . . xn

• Compute squared distances

d2i = ‖xi − s1‖22

for all points i not chosen, and choose s2 by drawing from the
remaining points, with probability weights d2i /

∑
j d

2
j

• Recompute the squared distances as

d2i = min
{
‖xi − s1‖22, ‖xi − s2‖22

}
and choose s3 according to the same recipe

• And so on, until s1, . . . sK are chosen

49

