
Gradient Subgrad Prox grad Stochastic
prox grad

Criterion smooth f any f smooth
+ simple,
f = g + h

smooth
+ simple,
f = g + h

Constraints projection
onto con-
straint
set

projection
onto con-
straint
set

constrained
prox opera-
tor

constrained
prox opera-
tor

Opti pa-
rameters

fixed
step size
(t ≤ 1/L)
or use line
search

diminishing
step sizes

fixed
step size
(t ≤ 1/L)
or use line
search

fixed step
size, mini-
batch size

Iteration
cost

cheap
(compute
gradient)

cheap
(compute
subgradi-
ent)

moderately
cheap
(evaluate
prox)

very cheap
(compute
stochastic
gradient,
evaluate
prox)

Rate O( 1
ε
) (ac-

celeration:
O( 1√

ε
),

strong
convexity:
O(log( 1

ε
)))

O( 1
ε2

) O( 1
ε
) (ac-

celeration:
O( 1√

ε
),

strong
convexity:
O(log( 1

ε
)))

O(1/ε2),
but prac-
tically
converges
rapidly at
the start
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Newton Barrier
method

Primal-dual
int-point

Prox New-
ton

Criterion doubly
smooth f

doubly
smooth f

doubly
smooth f

dbl smooth
+ simple,
f = g + h

Constraints equality
constraints

equality, dbl
smooth hi
(inequality
constraints)

equality, dbl
smooth hi
(inequality
constraints)

constrained
H-prox

Opti pa-
rameters

pure step
size (t = 1)
or use line
search

inner: pure
step size or
line search;
outer: bar-
rier update
factor

line search
for step
size, barrier
update
factor

pure step
size or use
line search

Iteration
cost

moderate to
expensive
(compute
Hessian and
solve linear
system)

expensive
to very
expensive
(one iter
solves one
smoothed
problem, by
Newton)

moderate to
expensive
(one iter
performs
one Newton
step)

expensive to
very expen-
sive (evalu-
ate H-prox)

Rate O(log log( 1
ε
))

(local
quadratic
rate)

O(log( 1
ε
))

(both iters,
and Newton
steps)

O(log( 1
ε
)) O(log log( 1

ε
))

(local
quadratic
rate)
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