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2.1 Review from last time

A convex optimization problem is of the form

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r

where the criterion f(x) is convex, the inequality constraint functions gi(x) are convex, and the equality
constraint functions hj(x) are affine. It has a nice property that any local minimizer is a global minimizer.

Nonconvex problems are mostly treated on a case by case basis.

2.2 Convex sets

2.2.1 Definitions of convex sets

A convex set is defined as C ∈ Rn such that x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1. In other words,
a line segment joining any two elements lies entirely in the set.

Figure 2.1: Convex set v.s. nonconvex set
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A convex combination of x1, . . . , xk ∈ Rn is any linear combination:

k∑
i=1

θixi = θ1x1 + . . .+ θkxk

with θi ≥ 0, i = 1, . . . , k and
∑k

i=1 θi = 1

A convex hull of a set C is the set of all convex combination of its elements, which is always convex. Any
convex combination of points in conv(C) is also

conv(C) = {
k∑

i=1

θixi : k ≥ 1, xi ∈ C, θi ≥ 0,

k∑
i=1

θi = 1

2.2.2 Examples of convex sets

• Norm ball: {x : ‖x‖ ≤ r}, for given norm‖·‖, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx ≤ b}, for given a, b

• Affine Space: {x : Ax = b}, for given A, b

• Polyhedron: {x : Ax ≤ b}, for given A, b. You can visualize every row of A as a normal vector for
each hyperplane involved. Also, {x : Ax ≤ b, Cx = d} is also a polyhedron because the equality Cx = d
can be made into two inequalities Cx ≤ d and Cx ≤ d.

Figure 2.2: Polyhedron with rows of A equal to ai, . . . , ak

• Simplex: is a special case of polyhedra, given by the convex hull of a set of affinely independent points
x0, . . . , xk (i.e. conv{x0, . . . , xk}). Affinely independent means that x1 − x0, . . . , xk − x0 are linearly
independent. A canonical example is the probability simplex

conv{e1, . . . , en} = {ω : ω ≤ 0,1Tω = 1}
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2.2.3 Definitions of convex cones

• A cone is C ∈ Rn such that
x ∈ C =⇒ tx ∈ C for all t ≥ 0

• A convex cone is a cone that is also convex:

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

Figure 2.3: Convex cone

• A conic combination of points x1, . . . , xk ∈ Rn is, for any θt ≥ 0, i = 1, . . . , k, any linear combination

θ1x1 + . . .+ θkxk

• A conic hull collects all conic combinations of x1, . . . , xk (or a general set C)

conic({x1, . . . , xk}) = {θ1x1 + . . .+ θkxk, θt ≥ 0, i = 1, . . . , k}

2.2.4 Examples of convex cones

• Norm cone: A norm cone is {(x, t) : ‖x‖ ≤ t} Under the `2 norm, this is called a second-order cone.

• Normal cone Given set C and point x ∈ C, a normal cone is

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

In other words, it’s the set of all vectors whose inner product is maximized at x. So the normal cone
is always a convex set regardless of what C is.

Figure 2.4: Normal cone

• PSD cone A positive semidefinite cone is the set of positive definite symmetric matrices. (Sn is the
set of n× n symmetric matrices)

Sn+ = {X ∈ Sn : X � 0}
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2.2.5 Properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between
them as shown in figure:2.5

Figure 2.5: Illustration of separating hyperplane

Formally, if C,D are nonempty disjoint convex sets, then there exists a, b such that

C ∈ {x : aTx ≤ b}

D ∈ {x : aTx ≥ b}

• Supporting hyperplane theorem: any boundary point of a convex set has a supporting hyperplane
passing through it. Formally, given an nonempty convex set C, for every point x0 ∈ bd(C), there exists
a such that

C ∈ {x : aTx ≤ aTx0}

2.2.6 Operations preserving convexity

• Intersection: The intersection of convex sets is also a convex sets.

• Scaling and Translation: If C is a convex set, then the following is convex for any a,b.

aC + b = {a x+ b : x ∈ C}

• Affine images and preimages: If f(x) = Ax+ b and C is convex then

f(C) = {f(X) : x ∈ C}

is convex, and if D is convex then

f−1(D) = {x : f(x) ∈ D}

is convex.

• Perspective images and preimages: For Function P : Rn × R++ → Rn (where R++ denotes
positive reals),
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P (x, z) = x/z

for z > 0 is a perspective function. If C ⊆ dom(P ) is convex, then so is P (C), and if D is convex then
so is P−1(D).

• Linear-fractal images and preimages: A linear fractal function is a perspective map composed
with an affine function, defined on CTx+ d > 0:

f(x) =
Ax+ b

cTx+ d

The image and preimage of f(x) are both convex.

2.2.7 Example of Operations on Convex Sets

2.2.7.1 Linear matrix inequality solution set

Given A1, ..., Ak, B ∈ Sn , a linear matrix inequality is of the form

x1A1 + x2A2 + ...+ xkAk � B

for a variable xinRk. The set C of points x that satisfy the above inequality is convex.
There are 2 approaches to prove that C is convex.

Approach 1: We could directly verify that for x, y ∈ c ⇒ tx + (1 − t)y ∈ C. This follows by check-
ing that, for any v, we have,

vT (B −
k∑

i=1

(txi + (1− t)yi)Ai)v ≥ 0

tvT (B −
k∑

i=1

xi)v + (1− t)vT (B −
k∑

i=1

yi)v ≥ 0.

The above is true because x, y ∈ C.

Approach 2: Let f : Rk −→ Sn, f(x) = B −
k∑

i=1

xiAi and note that this is the affine preimage of a convex

set, C = f−1(Sn
+)

2.2.7.2 Fantope

Given some integer k ≥ 0, the fantope of order k is F = {Z ∈ Sn : 0 � Z � I, tr(Z) = k}. We could prove
that F is convex in 2 ways.
Approach 1: We could prove that F is convex by taking two matrices 0 � Z,W � I and tr(Z) = tr(W ) = k
which implies the same for tZ + (1− t)W .

Approach 2: We recognize the fact that the fantope is :

F = {Z ∈ Sn : Z � 0} ∩ {Z ∈ Sn : Z � I} ∩ {Z ∈ Sn : tr(Z) = k}

which is an intersection of linear inequality and equality constraints like a polyhedron but for matrices.
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2.2.7.3 Conditional probability set

Let U,V be random variables over {1, ..., n} and {1, ...,m}. Let C ⊆ Rnm be a set of joint distributions for
U,V, i.e., each p ∈ C defines joint probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e., each q ∈ D defines

qij = P(U = i| V = j)

Assume C is convex, Let’s prove that D is convex. The set D can be rewritten as an image of a linear
fractional function:

D =

{
q ∈ Rn×m : qij =

pij∑n
k=1

for somep ∈ C
}

= f(C)

Hence D is convex.

2.3 Convex Functions

2.3.1 Definitions

A convex function is a function f : Rn → R such that dom(f) ⊆ Rn is convex, and

f(tx+ (1− t) y) ≤ t f(x) + (1− t)f(y)

The value of the function lies below the line segment joining f(x), f(y).

Figure 4: Graph of a convex function

A concave function has a similar function definition as a convex function but with an opposite inequality.

f concave ⇐⇒ -f convex

Some important modifiers:
Strictly convex: A function f is strictly convex if f(tx + (1 − t)y) < tf(x) + (1 − t)f(y) for x 6= y and
0 < t < 1. In words, f is convex and has greater curvature than a linear function.
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Strongly convex: A function f is strongly convex with parameter m > 0 if f − m
2 ‖X‖

2
2 is convex. In

words, f is at least as convex as a quadratic function.

From the above definition,

Strong Convexity ⇒ Strict Convexity ⇒ convexity.

It is similarly defined for concave function.

2.3.2 Examples of convex functions

• Univariate functions:

– Exponential function:The exponential function eax is convex for any a.

– Power function: The power function xa is convex for a ≥ 1 or a ≤ 0 and is concave for 0 ≤ a ≤ 1

– logarithmic function: The logarithmic function log(x) is always concave.

• Affine function: The affine function aTx+ b is both convex and concave.

• Quadratic function: The quadratic function
1

2
xTQx+bTx+c is convex provided that Q � 0(positive

semidefinite)

• Least square loss: ‖y −Ax‖2 is always convex since ATA is always a PSD matrix

• Norm: ‖X‖ is convex for any norm; e.g., lp norms.

‖X‖p = (

n∑
i=1

)
1
p for p ≥ 1, ‖X‖∞ = max

i=1,..n
|xi|

where σ1(X) ≥ .. ≥ σr(X) ≥ 0 are the singular value of the matrix X;

• Indicator function:If C is convex, then its indicator function is also convex. Its indicator function is
given by

IC(x) =

{
0, x ∈ C
∞, x /∈ C

• Support function: For any set C(convex or not), its support function defined by I∗C(x) is convex.

I∗C(x) = max
y∈C

xT y

• Max function: The maximum function, f(x) = max {x1, x2, x3, ..., xn} is a convex function.
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2.4 Key properties of convex functions

• A function is convex if and only if its restriction to any line is convex. For example, let f : Rn → R be
a function and x0, a ∈ Rn be a point in the domain of f . Let g(t) = f(x0 + ta). Then f is convex if
and only if g is convex for every choice of x0 and a. This property is useful for proving the convexity
of certain functions.

• Epigraph characterization: A function f is convex if and only if its epigraph is a convex set, where
the epigraph is defined as:

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

Intuitively, the epigraph is the set of points that lie above the graph of the function.

• Convex sublevel sets: If f is convex, then every sublevel set of f is convex, where a sublevel set is
defined as

{x ∈ dom(f) : f(x) ≤ t}

for some parameter t ∈ R. Unfortunately, the converse of this statement is not true. For example,
f(x) =

√
|x| is not a convex function but each of its sublevel sets are convex sets.

• First-order characterization: If f is differentiable, then f is convex if and only if dom(f) is convex,
and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Intuitively, the graph of f must completely lie above each of its tangent
hyperplanes. This characterization shows that for a differentiable f , x minimizes f if and only if
∇f(x) = 0.

• Second-order characterization: If f is twice differentiable, then f is convex if and only if dom(f)
is convex, and the Hessian matrix ∇2f(x) is positive semi-definite for all x ∈ dom(f).

• Jensen’s inequality: If f is convex, and X is a random variable supported on dom(f), then f(E[X]) ≤
E[f(X)]. A good way to remember the direction of the inequality is to try the function f(x) = x2:
E[x2]− E[x]2 is the variance, which must be non-negative.

2.5 Operations preserving convexity

Like for convex sets, there are some common operations that preserve convexity. They are useful for proving
the convexity of functions without resorting to the definition.

• Non-negative linear combination: If f1, . . . , fm are convex, then a1f1 + . . .+ amfm is convex for
any a1, . . . , am ≥ 0.

• Pointwise maximization: If fs is convex for any s ∈ S, then f(x) = maxs∈S fs(x) is convex. The
set S does not need to be finite.

• Partial minimization: If g(x, y) is convex in x, y and C is a convex set, then f(x) = miny∈C g(x, y)
is convex.

Pointwise maximization and partial minimization are similar. However, the set C in partial minimization
needs to be convex while the set S in pointwise maximization does not.
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• Affine composition: If f is convex, then g(x) = f(Ax+ b) is convex.

• General composition: Suppose f = h ◦ g, where g : Rn → R, h : R→ R, f : Rn → R. Then:

– f is convex if h is convex and non-decreasing, g is convex.

– f is convex if h is convex and non-increasing, g is concave.

– f is concave if h is concave and non-decreasing, g is concave.

– f is concave if h is concave and non-increasing, g is convex.

A good way to remember these is to consider n = 1 and twice-differentiable h and g, taking the
derivative using the chain rule,

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

– Suppose h is convex and non-decreasing, g is convex. Then h′′(g(x)) ≥ 0, h′(g(x)) ≥ 0, and
g′′(x) ≥ 0, so f ′′(x) ≥ 0 and f is convex.

– Suppose h is convex and non-increasing, g is concave. Then h′′(g(x)) ≥ 0, h′(g(x)) ≤ 0, and
g′′(x) ≤ 0, so f ′′(x) ≥ 0 and f is convex.

– Suppose h is concave and non-decreasing, g is concave. Then h′′(g(x)) ≤ 0, h′(g(x)) ≥ 0, and
g′′(x) ≤ 0, so f ′′(x) ≤ 0 and f is concave.

– Suppose h is concave and non-increasing, g is convex. Then h′′(g(x)) ≤ 0, h′(g(x)) ≤ 0, and
g′′(x) ≥ 0, so f ′′(x) ≤ 0 and f is concave.

• Vector composition: Suppose f(x) = h(g(x)) = h(g1(x), . . . , gk(x)) where g : Rn → Rk, h : Rk → R,
f : Rn → R. Then

– f is convex if h is convex and non-decreasing in each argument, g is convex.

– f is convex if h is convex and non-increasing in each argument, g is concave.

– f is concave if h is concave and non-decreasing in each argument, g is concave.

– f is concave if h is concave and non-increasing in each argument, g is convex.

2.5.1 Example: Distances to a set

Let C be an arbitrary set, and let f(x) be the maximum distance from x to any point in C, under an
arbitrary norm:

f(x) = max
y∈C
||x− y||

fy(x) is convex for any fixed y since it is an affine composition with a norm. Directly applying pointwise
maximization, we see that f is convex.

Now consider a convex C and let f(x) be the minimum distance from x to any point in C, under an arbitrary
norm:

f(x) = min y ∈ C||x− y||

g(x, y) is jointly convex in x, y. Directly applying partial minimization, we see that f is convex.



2-10 Lecture 2: September 3

2.5.2 Example: log-sum-exp function

This function is also known as “soft max” because it smoothly approximates maxi=1,...,k(aTi x+ bi):

g(x) = log

(
k∑

i=1

ea
T
i x+bi

)

To show that g is convex, we only need to show that f(x) = log (
∑n

i=1 e
x1) is convex since g is an affine

composition involving f . We can show this using the second-order characterization:

∂

∂xi
f(x) =

exi∑n
`=1 e

x`

∂2

∂xi∂xj
f(x) =

exi∑n
`=1 e

x`
1{i = j} − ex1exj

(
∑n

`=1 e
x`)

2

Now, the Hessian matrix can be written as

∇2f(x) = diag(z)− zzT

where zi = exi/ (
∑n

`=1 e
x`). This matrix is diagonally dominant, thus positive semi-definite and f is convex.


