10-725/36-725: Convex Opt	Fall 2015
	Lecture 2: September 3
Lecturer: Ryan Tibshirani	Scribes: Manu Reddy, Aurick Qiao, Su Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Review from last time

A convex optimization problem is of the form

$\min_{x\in\mathcal{D}}$	f(x)
subject to	$g_i(x) \le 0, i = 1, \dots, m$
	$h_i(x) = 0, i = 1, \dots, r$

where the criterion f(x) is convex, the inequality constraint functions $g_i(x)$ are convex, and the equality constraint functions $h_i(x)$ are affine. It has a nice property that any local minimizer is a global minimizer.

Nonconvex problems are mostly treated on a case by case basis.

2.2 Convex sets

2.2.1 Definitions of convex sets

A convex set is defined as $C \in \mathbb{R}^n$ such that $x, y \in C \implies tx + (1-t)y \in C$ for all $0 \le t \le 1$. In other words, a line segment joining any two elements lies entirely in the set.

Figure 2.1: Convex set v.s. nonconvex set

A convex combination of $x_1, \ldots, x_k \in \mathbb{R}^n$ is any linear combination:

$$\sum_{i=1}^k \theta_i x_i = \theta_1 x_1 + \ldots + \theta_k x_k$$

with $\theta_i \ge 0, i = 1, \dots, k$ and $\sum_{i=1}^k \theta_i = 1$

A convex hull of a set C is the set of all convex combination of its elements, which is always convex. Any convex combination of points in conv(C) is also

$$\operatorname{conv}(\mathcal{C}) = \{\sum_{i=1}^{k} \theta_i x_i : k \ge 1, x_i \in \mathcal{C}, \theta_i \ge 0, \sum_{i=1}^{k} \theta_i = 1$$

2.2.2 Examples of convex sets

- Norm ball: $\{x : ||x|| \le r\}$, for given norm $||\cdot||$, radius r
- Hyperplane: $\{x : a^T x = b\}$, for given a, b
- Halfspace: $\{x : a^T x \leq b\}$, for given a, b
- Affine Space: $\{x : Ax = b\}$, for given A, b
- Polyhedron: $\{x : Ax \leq b\}$, for given A, b. You can visualize every row of A as a normal vector for each hyperplane involved. Also, $\{x : Ax \leq b, Cx = d\}$ is also a polyhedron because the equality Cx = d can be made into two inequalities $Cx \leq d$ and $Cx \leq d$.

Figure 2.2: Polyhedron with rows of A equal to a_i, \ldots, a_k

• Simplex: is a special case of polyhedra, given by the convex hull of a set of affinely independent points x_0, \ldots, x_k (i.e. $\operatorname{conv}\{x_0, \ldots, x_k\}$). Affinely independent means that $x_1 - x_0, \ldots, x_k - x_0$ are linearly independent. A canonical example is the probability simplex

$$\operatorname{conv}\{e_1,\ldots,e_n\} = \{\omega : \omega \le 0, \mathbf{1}^T \omega = 1\}$$

2.2.3 Definitions of convex cones

• A cone is $\mathcal{C} \in \mathbb{R}^n$ such that

$$x \in \mathcal{C} \Longrightarrow tx \in \mathcal{C}$$
 for all $t \ge 0$

• A convex cone is a cone that is also convex:

$$x_1, x_2 \in \mathcal{C} \Longrightarrow t_1 x_1 + t_2 x_2 \in \mathcal{C} \text{ for all } t_1, t_2 \ge 0$$

Figure 2.3: Convex cone

• A conic combination of points $x_1, \ldots, x_k \in \mathbb{R}^n$ is, for any $\theta_t \ge 0, i = 1, \ldots, k$, any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$

• A conic hull collects all conic combinations of x_1, \ldots, x_k (or a general set \mathcal{C})

$$\operatorname{conic}(\{x_1,\ldots,x_k\}) = \{\theta_1 x_1 + \ldots + \theta_k x_k, \theta_t \ge 0, i = 1,\ldots,k\}$$

2.2.4 Examples of convex cones

- Norm cone: A norm cone is $\{(x,t): ||x|| \le t\}$ Under the ℓ_2 norm, this is called a second-order cone.
- Normal cone Given set C and point $x \in C$, a normal cone is

$$\mathcal{N}_{\mathcal{C}}(x) = \{g : g^T x \ge g^T y, \text{ for all } y \in \mathcal{C}\}$$

In other words, it's the set of all vectors whose inner product is maximized at x. So the normal cone is always a convex set regardless of what C is.

Figure 2.4: Normal cone

• **PSD cone** A positive semidefinite cone is the set of positive definite symmetric matrices. (\mathbb{S}^n is the set of $n \times n$ symmetric matrices)

$$\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n : X \succeq 0 \}$$

2.2.5 Properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them as shown in figure:2.5

Figure 2.5: Illustration of separating hyperplane

Formally, if \mathcal{C}, \mathcal{D} are nonempty disjoint convex sets, then there exists a, b such that

$$\mathcal{C} \in \{x : a^T x \le b\}$$
$$\mathcal{D} \in \{x : a^T x \ge b\}$$

• Supporting hyperplane theorem: any boundary point of a convex set has a supporting hyperplane passing through it. Formally, given an nonempty convex set C, for every point $x_0 \in bd(C)$, there exists a such that

$$\mathcal{C} \in \{x : a^T x \le a^T x_0\}$$

2.2.6 Operations preserving convexity

- Intersection: The intersection of convex sets is also a convex sets.
- Scaling and Translation: If C is a convex set, then the following is convex for any a,b.

$$aC + b = \{ax + b : x \in C\}$$

• Affine images and preimages: If f(x) = Ax + b and C is convex then

$$f(C) = \{f(X) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex.

• Perspective images and preimages: For Function $P : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals),

$$P(x,z) = x/z$$

for z > 0 is a perspective function. If $C \subseteq dom(P)$ is convex, then so is P(C), and if D is convex then so is $P^{-1}(D)$.

• Linear-fractal images and preimages: A linear fractal function is a perspective map composed with an affine function, defined on $C^T x + d > 0$:

$$f(x) = \frac{Ax+b}{c^T x+d}$$

The image and preimage of f(x) are both convex.

2.2.7 Example of Operations on Convex Sets

2.2.7.1 Linear matrix inequality solution set

Given $A_1,...,A_k,B\in\mathbb{S}^n$, a $\mathit{linear matrix inequality}$ is of the form

$$x_1A_1 + x_2A_2 + \dots + x_kA_k \preceq B$$

for a variable $xin\mathbb{R}^k$. The set C of points x that satisfy the above inequality is convex. There are 2 approaches to prove that C is convex.

Approach 1: We could directly verify that for $x, y \in c \Rightarrow tx + (1 - t)y \in C$. This follows by checking that, for any v, we have,

$$v^{T}(B - \sum_{i=1}^{k} (tx_{i} + (1 - t)y_{i})A_{i})v \ge 0$$
$$tv^{T}(B - \sum_{i=1}^{k} x_{i})v + (1 - t)v^{T}(B - \sum_{i=1}^{k} y_{i})v \ge 0.$$

The above is true because $x, y \in C$.

Approach 2: Let $f : \mathbb{R}^k \longrightarrow \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$ and note that this is the affine preimage of a convex set, $C = f^{-1}(S^n_+)$

2.2.7.2 Fantope

Given some integer $k \ge 0$, the *fantope* of order k is $\mathcal{F} = \{Z \in \mathbb{S}^n : 0 \le Z \le I, tr(Z) = k\}$. We could prove that F is convex in 2 ways.

Approach 1: We could prove that \mathcal{F} is convex by taking two matrices $0 \leq Z, W \leq I$ and tr(Z) = tr(W) = k which implies the same for tZ + (1-t)W.

Approach 2: We recognize the fact that the fantope is :

$$\mathcal{F} = \{ Z \in \mathbb{S}^n : Z \succeq 0 \} \cap \{ Z \in \mathbb{S}^n : Z \preceq I \} \cap \{ Z \in \mathbb{S}^n : tr(Z) = k \}$$

which is an intersection of linear inequality and equality constraints like a polyhedron but for matrices.

2.2.7.3 Conditional probability set

Let U,V be random variables over $\{1, ..., n\}$ and $\{1, ..., m\}$. Let $C \subseteq \mathbb{R}^n m$ be a set of joint distributions for U,V, i.e., each $p \in C$ defines joint probabilities

$$p_{ij} = \mathbb{P}(U = i, V = j)$$

Let $D \subseteq \mathbb{R}^{nm}$ contain corresponding conditional distributions, i.e., each $q \in D$ defines

$$q_{ij} = \mathbb{P}(U = i | V = j)$$

Assume C is convex, Let's prove that D is convex. The set D can be rewritten as an image of a linear fractional function:

$$D = \left\{ q \in \mathbb{R}^{n \times m} : q_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n}} \text{for some} p \in C \right\} = f(C)$$

Hence D is convex.

2.3 Convex Functions

2.3.1 Definitions

A convex function is a function $f : \mathbb{R}^n \to \mathbb{R}$ such that $dom(f) \subseteq \mathbb{R}^n$ is convex, and

$$f(tx + (1 - t)y) \le t f(x) + (1 - t)f(y)$$

The value of the function lies below the line segment joining f(x), f(y).

Figure 4: Graph of a convex function

A concave function has a similar function definition as a convex function but with an opposite inequality.

 $f concave \iff -f convex$

Some important modifiers:

Strictly convex: A function f is strictly convex if f(tx + (1 - t)y) < tf(x) + (1 - t)f(y) for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function.

Strongly convex: A function f is strongly convex with parameter m > 0 if $f - \frac{m}{2} \|X\|_2^2$ is convex. In words, f is at least as convex as a quadratic function.

From the above definition,

Strong Convexity \Rightarrow Strict Convexity \Rightarrow convexity.

It is similarly defined for concave function.

2.3.2 Examples of convex functions

- Univariate functions:
 - **Exponential function**: The exponential function e_{ax} is convex for any a.
 - **Power function**: The power function x^a is convex for $a \ge 1$ or $a \le 0$ and is concave for $0 \le a \le 1$
 - logarithmic function: The logarithmic function log(x) is always concave.
- Affine function: The affine function $a^T x + b$ is both convex and concave.
- Quadratic function: The quadratic function $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
- Least square loss: $||y Ax||^2$ is always convex since $A^T A$ is always a PSD matrix
- Norm: ||X|| is convex for any norm; e.g., l_p norms.

$$||X||_p = (\sum_{i=1}^n)^{\frac{1}{p}} \text{ for } p \ge 1, \ ||X||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

where $\sigma_1(X) \ge .. \ge \sigma_r(X) \ge 0$ are the singular value of the matrix X;

• Indicator function: If C is convex, then its indicator function is also convex. Its indicator function is given by

$$I_C(x) = \begin{cases} 0, & x \in C \\ \infty, & x \notin C \end{cases}$$

• Support function: For any set C(convex or not), its support function defined by $I_C^*(x)$ is convex.

$$I_C^*(x) = \max_{y \in C} x^T y$$

• Max function: The maximum function, $f(x) = max \{x_1, x_2, x_3, ..., x_n\}$ is a convex function.

2.4 Key properties of convex functions

- A function is convex if and only if its restriction to any line is convex. For example, let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and $x_0, a \in \mathbb{R}^n$ be a point in the domain of f. Let $g(t) = f(x_0 + ta)$. Then f is convex if and only if g is convex for every choice of x_0 and a. This property is useful for proving the convexity of certain functions.
- Epigraph characterization: A function *f* is convex if and only if its epigraph is a convex set, where the epigraph is defined as:

$$epi(f) = \{(x,t) \in dom(f) \times \mathbb{R} : f(x) \le t\}$$

Intuitively, the epigraph is the set of points that lie above the graph of the function.

• Convex sublevel sets: If f is convex, then every sublevel set of f is convex, where a sublevel set is defined as

$$\{x \in \operatorname{dom}(f) : f(x) \le t\}$$

for some parameter $t \in \mathbb{R}$. Unfortunately, the converse of this statement is not true. For example, $f(x) = \sqrt{|x|}$ is not a convex function but each of its sublevel sets are convex sets.

• First-order characterization: If f is differentiable, then f is convex if and only if dom(f) is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom}(f)$. Intuitively, the graph of f must completely lie above each of its tangent hyperplanes. This characterization shows that for a differentiable f, x minimizes f if and only if $\nabla f(x) = 0$.

- Second-order characterization: If f is twice differentiable, then f is convex if and only if dom(f) is convex, and the Hessian matrix $\nabla^2 f(x)$ is positive semi-definite for all $x \in \text{dom}(f)$.
- Jensen's inequality: If f is convex, and X is a random variable supported on dom(f), then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$. A good way to remember the direction of the inequality is to try the function $f(x) = x^2$: $\mathbb{E}[x^2] \mathbb{E}[x]^2$ is the variance, which must be non-negative.

2.5 Operations preserving convexity

Like for convex sets, there are some common operations that preserve convexity. They are useful for proving the convexity of functions without resorting to the definition.

- Non-negative linear combination: If f_1, \ldots, f_m are convex, then $a_1f_1 + \ldots + a_mf_m$ is convex for any $a_1, \ldots, a_m \ge 0$.
- Pointwise maximization: If f_s is convex for any $s \in S$, then $f(x) = \max_{s \in S} f_s(x)$ is convex. The set S does not need to be finite.
- Partial minimization: If g(x, y) is convex in x, y and C is a convex set, then $f(x) = \min_{y \in C} g(x, y)$ is convex.

Pointwise maximization and partial minimization are similar. However, the set C in partial minimization needs to be convex while the set S in pointwise maximization does not.

- Affine composition: If f is convex, then g(x) = f(Ax + b) is convex.
- General composition: Suppose $f = h \circ g$, where $g : \mathbb{R}^n \to \mathbb{R}, h : \mathbb{R} \to \mathbb{R}, f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - -f is convex if h is convex and non-decreasing, g is convex.
 - -f is convex if h is convex and non-increasing, g is concave.
 - -f is concave if h is concave and non-decreasing, g is concave.
 - -f is concave if h is concave and non-increasing, g is convex.

A good way to remember these is to consider n = 1 and twice-differentiable h and g, taking the derivative using the chain rule,

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

- Suppose h is convex and non-decreasing, g is convex. Then $h''(g(x)) \ge 0$, $h'(g(x)) \ge 0$, and $g''(x) \ge 0$, so $f''(x) \ge 0$ and f is convex.
- Suppose h is convex and non-increasing, g is concave. Then $h''(g(x)) \ge 0$, $h'(g(x)) \le 0$, and $g''(x) \le 0$, so $f''(x) \ge 0$ and f is convex.
- Suppose h is concave and non-decreasing, g is concave. Then $h''(g(x)) \leq 0$, $h'(g(x)) \geq 0$, and $g''(x) \leq 0$, so $f''(x) \leq 0$ and f is concave.
- Suppose h is concave and non-increasing, g is convex. Then $h''(g(x)) \leq 0$, $h'(g(x)) \leq 0$, and $g''(x) \geq 0$, so $f''(x) \leq 0$ and f is concave.
- Vector composition: Suppose $f(x) = h(g(x)) = h(g_1(x), \dots, g_k(x))$ where $g : \mathbb{R}^n \to \mathbb{R}^k$, $h : \mathbb{R}^k \to \mathbb{R}$, $f : \mathbb{R}^n \to \mathbb{R}$. Then
 - -f is convex if h is convex and non-decreasing in each argument, g is convex.
 - -f is convex if h is convex and non-increasing in each argument, g is concave.
 - -f is concave if h is concave and non-decreasing in each argument, g is concave.
 - -f is concave if h is concave and non-increasing in each argument, g is convex.

2.5.1 Example: Distances to a set

Let C be an arbitrary set, and let f(x) be the maximum distance from x to any point in C, under an arbitrary norm:

$$f(x) = \max_{y \in C} ||x - y||$$

 $f_y(x)$ is convex for any fixed y since it is an affine composition with a norm. Directly applying pointwise maximization, we see that f is convex.

Now consider a convex C and let f(x) be the minimum distance from x to any point in C, under an arbitrary norm:

$$f(x) = \min y \in C||x - y||$$

g(x, y) is jointly convex in x, y. Directly applying partial minimization, we see that f is convex.

2.5.2 Example: log-sum-exp function

This function is also known as "soft max" because it smoothly approximates $\max_{i=1,\ldots,k} (a_i^T x + bi)$:

$$g(x) = \log\left(\sum_{i=1}^{k} e^{a_i^T x + b_i}\right)$$

To show that g is convex, we only need to show that $f(x) = \log(\sum_{i=1}^{n} e^{x_1})$ is convex since g is an affine composition involving f. We can show this using the second-order characterization:

$$\frac{\partial}{\partial x_i} f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}}$$
$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}} 1\{i=j\} - \frac{e^{x_1} e^{x_j}}{\left(\sum_{\ell=1}^n e^{x_\ell}\right)^2}$$

Now, the Hessian matrix can be written as

$$\nabla^2 f(x) = \operatorname{diag}(z) - z z^T$$

where $z_i = e^{x_i} / (\sum_{\ell=1}^n e^{x_\ell})$. This matrix is diagonally dominant, thus positive semi-definite and f is convex.