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3.1 Optimization terminology

To standardize language we present a general convex optimization problem below where the objective func-
tion, f , and inequality constraint functions, gi, are all convex. Equivilently we could study the maximiza-
tion of concave functions. Note that although we do not often discuss it, the domain of this problem is
D = dom(f) ∩mi=1 dom(gi). Example: General form of optimization problem

min
x∈D

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m
Ax = b

(3.1)

Any x ∈ D that satisfies all the constraints is feasible point. The optimal point, x?, minimizes f(x) over all
feasible points, yielding the optimal value, f(x?) = f?. A feasible point is ε-suboptimal when f(x) ≤ f? + ε.
Finally, a constraint gi is active at feasible point x when gi(x) = 0. FOr example, we often discuss constraints
which are active at the solution, x?.

An important nuance is that convex optimization problems need not have solutions. For example, the
minimization of a linear function in Rn has no solution, but is still considered convex optimization.

3.2 Convex solution sets

In addition to minimizing an objective, we are also interested in the solution set, Xopt of a convex function.
Instead of finding the minx∈D from Example , here we are interested in argminx∈D. We can see that Xopt

is a convex set because given any two solutions to Example x, y, and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.2)

since we know that x and y are solutions,

θf(x) + (1− θ)f(y) = θf? + (1− θ)f? = f? (3.3)

and θx+ (1− θ)y is also a solution!

As we mentioned in the previous section, just because Xopt is a convex set, does not mean that convex
optimization problems have solutions. In fact a convex optimization problem may have 0, 1 or uncountably
infinite solutions. Xopt is an empty set when no solutions are obtained (e.g. in a minimization of a linear
function). Exactly 1 solution is obtained when the criterion f is strictly convex (e.g. when f(x) = x2). In
all other cases Xopt is a set of uncountably infinite solutions!
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3.2.1 Lasso example

To provide some intuition for these definitions we consider the lasso, or L1 penalized regression problem.
Given y ∈ Rn and X ∈ Rnxp the lasso is, .

min
β∈Rp

‖y −Xβ‖22
s.t. ‖β‖1 ≤ s

(3.4)

Since the objective is a least squares regression (convex) and the constraint is a shifted norm (convex) we
see that this is a convex optimization problem. The feasible set are the values of β ∈ Rp within the norm
ball of L1 distance s.

To understand the solution set, βopt, we consider two different regimes for the input. When we have more
samples than features, n ≥ p, the input X has full rank. In this case 52f(β) = 2XTX � 0 implying that
the problem is strictly convex with exactly one solution. However, in the high dimensional case when n < p
we cannot guarantee a unique solution. Later in the course we will revisit the lasso problem to understand
under what guarantees we do have in the latter case.

3.2.2 SVM example

In the case of support vector machines, we have that the optimization problem is

min
β,β0,ξ

1
2‖β‖

2
2 + C

n∑
i=1

ξi

s.t. ξi ≥ 0
yi(x

T
i β + β0) ≥ 1− ξi ∀i = 1 . . . n

(3.5)

In this case, the criterion is:

f(x) = min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

and the constraints are:

ξi ≥ 0 ∀i = 1 . . . n
yi(x

T
i β + β0) ≥ 1− ξi ∀i = 1 . . . n

Even though the objective function is convex, it is not strictly convex, since the term C
∑n
i=1 ξi is linear on

the slack variables ξi. A solution (β, β0, ξ) is not necessarily unique, as there might be solutions in different
directions. Changing the criterion to be

f(x) = min
β,β0,ξ

1

2
‖β‖22 +

1

2
‖β0‖22 + C

n∑
i=1

ξi

would make solutions unique. However, this does not make sense, as it would imply we have a penalty for
the separating plane going far from the origin, which is not something we are interested on doing.



Lecture 3: September 8 3-3

3.2.3 Local minima and global minima

A point is called locally optimal if there exists some R > 0 such that

f(x) ≤ f(y) for all feasible y such that ||x− y||2 ≤ R

One of the main results we have seen so far is that in the case of convex problems local optima are global
optima. However, it is important to remember this results does not imply that the global optima is unique.

3.3 Properties and first-order optimality

3.3.1 Rewriting constraints

So far, we have written optimization problems in the following way:

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1 . . . n

Ax = 0

(3.6)

There are two main ways in whichh we can rewrite this.

1. Completely general form

min f(x) subject to x ∈ C

where we define C = {x : gi(x) ≤ 0, i = 1, . . .m,Ax = b}

2. Unconstrained form

min f(x) + IC(x)

where IC(x) is the indicator function.

3.3.2 First-order optimality condition

The first-order optimality condition tells us that if f is differentiable, for the convex problem

min f(x) subject to x ∈ C

a feasible point is optimal if and only if the following holds:

∇f(x)T (y − x) ≥ 0 for all y ∈ C

An important special case of this property is when C = Rn, meaning the optimization problem is uncon-
strained. Since y can take any value in the Rn space, the above statement is equivalent to saying that:

∇f(x) = 0
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3.3.2.1 Example: quadratic minimization

Let f(x) be the quadratic function

f(x) = 1
2x

TQx+ bTx+ c where Q � 0

Since f is differentiable, we can appply the first order condition, which indicates a point will be optimal if
and only if the following holds:

∇f(x) = Qx+ b = 0

We can solve such equality by considering three cases:

• Q � 0: In this case Q is invertible and there will be a unique solution x = −Q−1b

• Q is singular and b /∈ col(Q): No solution, meaning minx f(x) = −∞

• Q is singular and b ∈ col(Q): Infinitely many solutions of the form x = Q+b+ z for zinnull(Q).

Note: Q+ is the pseudoinverse of Q. This extends the notion of inverse when the matrix is not
invertible. In cases where the matrix invertible the pseudoinverse is the same inverse.

3.3.2.2 Example: equality-constrained optimization

Consider the equality-constrained convex problem for a differentiable f :

min f(x)
s.t. Ax = 0

(3.7)

The Lagrange multiplier optimality condition states:

∇f(x) +ATu = 0 for some u

Here we present the proof:

According to the first-order optimality condition

∇f(x)(y − x) ≥ 0 ∀y : y = Ay = b

Combining this with the equality constraint of the problem itself we obtain:

∇f(x)(y − x) ≥ 0 ∀y : A(y − x) = b

Setting v = y − x,

∇f(x)v ≥ 0 ∀v ∈ null(A)
⇒ ∇f(x)v = 0 ∀v ∈ null(A)
⇒ ∇f(x) ∈ row(A) (since null(A)⊥ = row(A))
⇒ ∇f(x) = Atu for some u
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3.4 Equivalent transformation

3.4.1 Partial optimization

Reminder: If f is convex in (x, y) and C is convex then g(x) = miny∈C f(x, y) is convex in x.
Because of this property, we can partially optimize a convex problem and retain convexity.
Example: Let x = x1, x2 ∈ Rn1+n2 , then the following two convex optimization problems are equivalent:

1. minx1,x2
f(x1, x2) s.t. g(x1) ≤ 0 and g(x2) ≤ 0

2. minx1 f̃(x1) s.t. g1(x1) ≤ 0

where f̃(x1) = min{f(x1, x2) : g2(x2) ≤ 0}. If the first problem is convex then so is the second problem.

Example: Hinge form of SVMs

min
β,β0,ξ

1
2‖β‖

2
2 + C

n∑
i=1

ξi

s.t. ξi ≥ 0
yi(x

T
i β + β0) ≥ 1− ξi ∀i = 1 . . . n

(3.8)

The constraint can be rewritten as ξi ≥ max 0, 1− yi(xTi β + β0) and we achieve equality at the optimal ξ.
Therefore, the hinge form of SVMs for optimal ξ is:

min
β,β0

1

2
‖β‖22 + C

n∑
i=1

[1− yi(xTi β + β0)]+ (3.9)

where a+ = max a, 0 is called the hinge function.

3.4.2 Transformation and change of variables

Lemma 3.1 If h: R→ R is a monotone increasing transformation, then:

min
x

f(x) subject to x ∈ C

⇐⇒ min
x

h(f(x)) subject to x ∈ C
(3.10)

Inequality and equality constraints can be transformed and yield equivalent optimization problems.

Lemma 3.2 If φ : Rn → Rm is one-to-on, and its image covers feasible set C, then we can change variables
in an optimization problem:

min
x

f(x) subject to x ∈ C

⇐⇒ min
y

f(φ(y)) subject to φ(y) ∈ C
(3.11)
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3.4.3 Eliminiating equality constraints

Equality constraints could be eliminated by incorporating them into inequality constraints. Given the
problem:

min
x

f(x)

subject to gi(x) ≤ 0, i = 1 . . .m

Ax = b

(3.12)

Any feasible point can be expressed as x = My + x0, where Ax0 = b and col(M) = null(A). Convex
optimization problem 3.12 is equivalent to:

min
x

f(My + x0)

subject to gi(My + x0) ≤ 0, i = 1 . . .m
(3.13)

Note that eliminating equality constraints is fully general but not always a good idea. There are two main
reasons:

• Computing M might be expensive

• If A is a sparse matrix, there are neat tricks to solve problem 3.12. On the other hand, M will be
dense and make it difficult to solve problem 3.13.

3.4.4 Introducing slack variables

Slack variables can be introduced to the optimization problem by decomposing the inequality constraints
into affine equalities and slack variables. By introducing slack variables, the standard convex optimization
problem 3.12 is transformed into:

min
x

f(x)

subject to si ≥ 0, i = 1 . . .m

gi(x) + si = 0, i = 1 . . .m

Ax = b

(3.14)

Note that problem 3.14 is no longer convex unless each gi(x) is an affine function. In that case, problem
3.14 becomes linear programming, which can be solved using simplex algorithms.
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