
10-725/36-725: Convex Optimization Fall 2015

Lecture 4: September 10
Lecturer: Ryan Tibshirani Scribes: Lee (Lili) Gao

Mariya Toneva
Xun Zheng

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Last Lecture Leftovers

Relaxing nonaffine equality constaints

Consider an optimization problem of the form:

min
x

f(x)

subject to x ∈ C

If we were to take an enlarged constraint set C̃ ⊇ C, the optimal value is always smaller or equal to that of
the original problem. This technique is called a relaxation.

Relaxation is especially useful when an optimization problem has nonaffine equality constraints of the form:

hj(x) = 0, j = 1, ...r

where hj , j = 1, ...r are convex but nonaffine. Since the convexity of the optimization problem requires affine
equality constraints, these convex nonaffine constraints can be relaxed to convex inequalities of the form:

hj(x) ≤ 0, j = 1, ...r

To illustrate the importance of relaxation of nonaffine equalities in optimization, we consider a few examples.

Examples

1. Maximum utility problem

the maximum utility problem models investment/consumption:

min
x

f(x)

subject to x ∈ C
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max
x,b

T∑
t=1

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 1, ...T

0 ≤ xt ≤ bt, t = 1, ...T

where bt is the budget, xt is the amount consumed at time t, f is an investment return function, u is a utility
function. Both f and u are concave and increasing.

Because the equality constraint in the original problem is nonaffine, we can use relaxation to make the
criterion concave (as we need to maximize it).

2. Principal Component Analysis (PCA)

Given X ∈ Rn×p, consider the low rank approximation problem:

min
R∈Rn×p

‖X −R‖2F

subject to rank(R) = k

If X = UDV T , a well-known solution can be found through singular value decomposition. The solution is
of the form:

R = UkDkV
T
k

where Uk, Vk are the first k columns of U, V and Dk is the first k diagonal elements of D.

This problem is not convex because rank is not a convex function. However, we can recast this problem into
convex form by using relaxation.

To begin, we can rewrite the above as:

min
Z∈Sp

‖X −XZ‖2F

subject to rank(Z) = k

Here the constraint set is the nonconvex set

C = {Z]inSp : λi(Z) ∈ 0, 1, i = 1, ...p, tr(Z) = k}

where λi(Z), i = 1, ...n are the eigenvalues of Z. The solution is

Z = VkV
T
k

where Vk gives the first k columns of V .

Next, we can relax the constraint set to F = conv(C), its convex hull:

F = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, ...p, tr(Z) = k} = {Z ∈ Sp : 0 � Z � I, tr(Z) = k}
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Note that this is exactly the fantope of order k. Since fantope projections are convex, we can rewrite the
above nonconvex problem in a convex form:

min
Z∈Sp

‖X −XZ‖2F

subject to Z ∈ F

This reformulation admits the same solution as the nonconvex PCA problem and is thus equivalent, because
the convex relaxation is tight at the solution.

4.2 Linear Programs

A linear program (LP) is an optimization program of the following form, which is always a convex optimiza-
tion problem:

min
x

cTx

subject to Dx ≤ d
Ax = b

LP is the fundamental problem in convex optimization and there are many applications. It is first introduced
by Kantorovich in the late 1930s and Dantzig in the late 1940s. Dantzig’s simplex algorithm gives a direct
solver for LPs.

Examples

1. Diet Problem

The diet problem is to find cheapest combination of foods that satisfies some nutritional requirements. It
can be formalized in the following LP problem:

min
x

cTx

subject to Dx ≥ d
x ≥ 0

where cj is the per-unit cost of food j; di is the minimum required intake of nutrient i; Dij is the content of
nutrient i contained in per unit of food j and xj is the units of food j in the diet.

2. Transportation Problem

The transportation problem is to minimize the cost of shipping commodities from given sources to destina-
tions. It can be formalized in the following LP problem:
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min
x

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ si, i = 1, ...,m

m∑
i=1

xij ≥ dj , j = 1, ..., n

x ≥ 0

where si is the supply of commodities at source i; dj is the demand of commodities at destination j; cij is
the per-unit shipping cost from i to j, and xij is the units shipped from i to j.

3. Basis Pursuit

Given y ∈ Rn and X ∈ Rn×p with p > n. We are seeking th sparsest solution to underdetermined system of
equations Xβ = y.

The Nonconvex formulation of this problem can be written as

min
β

||β||0

subject to Xβ = y

The l1 approximation to the above problem is called basis pursuit

min
β

||β||1

subject to Xβ = y

which is an LP and can be reformulated as

min
β,z

1T z

subject to z ≥ β
z ≥ −β
Xβ = y

4. Dantzig Selector

A modification of Basis Pursuit, in which we allow for Xβ ≈ y (not enforcing exact equality) is called the
Dantzig selector, which can be written as:

min
β

||β||1

subject to
∣∣∣∣XT (y −Xβ)

∣∣∣∣
∞ ≤ λ
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where λ is a tuning parameter. When λ = 0, this is equivalent to Basis Pursuit. Again, Dantzig selector can
also been refomulated into a LP if we write the constrain as

−λ ≤ XT
j (y −Xβ) ≤ λ, ∀j = 1, ..., p

Standard Form

A LP is said to be in standard form when it is written as

min
x

cTx

subject to Ax = b

x ≥ 0

Any LP can be rewritten in standard form.

4.3 Quadratic Programs

A convex quadratic program (QP) is an optimization problem of the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b

where Q � 0. The QP is convex only if Q � 0. The remainder of these notes discuss only QP’s in which
Q � 0.

Examples

1. Portfolio optimization

To trade off performance and risk in a financial portfolio, we can use a QP:

max
x

µTx+
γ

2
xTQx

subject to 1Tx = 1

x ≥ 0

where µ represents expected assets’ returns, Q the covariance matrix of assets’ returns, γ risk aversion, x
portfolio holdings (percentages).
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2. Support vector machines

Given y ∈ {−1, 1}n , X ∈ Rn×p with rows x1, ...xn, recall the support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to xii ≥ 0, i = 1, ...n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, ...n

3. Lasso

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β∈Rp

‖y −Xβ‖22

subject to ‖β‖1 ≤ s

where s ≥ 0 is a tuning parameter. This can be rewritten as a quadratic program.

Alternative way to parametrize the lasso problem (called Lagrange, or penalized form):

min
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

Now λ ≥ 0 is a tuning parameter. This can also be rewritten as a quadratic program.

Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

Any quadratic program can be rewritten in standard form.
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4.4 Semidefinite Programs

4.4.1 Background and motivation

Recall the linear programming problem:

min
x

c>x (4.1)

subject to Dx ≤ d (4.2)

Ax = b. (4.3)

The idea of SDP is to generalize element-wise inequality in the constraint to partial orders.

First recall a few definitions of space of symmetric matrices.

• Sn is the space of all n× n symmetric matrices. Note that X ∈ Sn ⇒ λ(X) ∈ Rn, i.e., eigenvalues of
a symmetric matrix are real.

• Sn+ is the space of all n× n positive semidefinite matrices, i.e.,

Sn+ =
{
X ∈ Sn : u>Xu ≥ 0, ∀u ∈ Rn

}
. (4.4)

Also X ∈ Sn+ ⇔ λ(X) ∈ Rn+, i.e., eigenvalues of a symmetric, positive semidefinite matrix are nonneg-
ative.

• Sn++ is the space of all n× n positive definite matrices, i.e.,

Sn++ =
{
X ∈ Sn : u>Xu > 0, ∀u ∈ Rn\ {0}

}
. (4.5)

Similarly X ∈ Sn++ ⇔ λ(X) ∈ Rn++, i.e., eigenvalues of a symmetric, positive definite matrix are
strictly positive.

The partial ordering over Sn (the Loewner ordering) is defined as follows, given X,Y ∈ Sn:

X � Y ⇐⇒ X − Y ∈ Sn+. (4.6)

4.4.2 Semidefinite programs

A semidefinite program (SDP) is an optimization problem of the form

min
x

c>x (4.7)

subject to x1F1 + · · ·+ xnFn � F0 (4.8)

Ax = b, (4.9)

where Fj ∈ Sd, j = 0, 1, . . . , n, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. Notice that the first constraint is the linear
matrix inequality (LMI), whose solution set is convex as proven in earlier lectures, therefore it is a convex
problem. Observe the similarity between LP and SDP: roughly, we have replaced the columns of matrix D
and vector d of LP with a set of matrices F1, . . . , Fn and F0 respectively. Also note that if all Fj are diagonal
matrices, then the LMI becomes a set of linear inequalities, thus the problem is reduced to linear programs
(LP).
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A SDP is in the standard form if it is written as

min
X∈Sn

C •X (4.10)

subject to Ai •X = bi, i = 1, . . . ,m (4.11)

X � 0, (4.12)

where C,A1, . . . , Am ∈ Sn and X • Y is the inner product 〈X,Y 〉 = tr
(
X>Y

)
between two matrices X,Y .

Notice the target variable has now became a symmetric matrix instead of a vector. We can also observe
similarity between standard form of LP and SDP: instead of nonnegativity constraint, SDP introduced
positive semidefinite constraint, which is the matrix version of nonnegativity constraint.

To convert any SDP to standard form, we can again make use of slack variables. In particular, we can first
split x into positive and negative parts, i.e., x = x+ − x−, such that x+, x− ≥ 0. Next, the inequality can
be cast into equality by introducing a slack variable Y � 0. Then the problem now becomes

min
x+,x−,Y

c>x+ − c>x− (4.13)

subject to
(
x+1 − x

−
1

)
F1 + · · ·+

(
x+n − x−n

)
Fn + Y = F0 (4.14)

Ax+ −Ax− = b (4.15)

x+ ≥ 0, x− ≥ 0, Y � 0. (4.16)

The standard form can be realized by constructing block matrices out of x+, x−, and Y and rearranging
coefficient matrices.

Example: theta function. Let G = (N,E) be an undirected graph, N = {1, . . . , n}. The Lovasz theta
function is defined as an SDP:

ϑ(G) = max
X

11> •X (4.17)

subject to I •X = 1 (4.18)

Xij = 0, (i, j) /∈ E (4.19)

X � 0. (4.20)

Why is this quantity particularly interesting? Denote ω(G) as the clique number of G, i.e. the size of the
largest clique in the graph; and χ(G) as the chromatic number of G, i.e. the smallest number of colors needed
to color N so that no two adjacent nodes share the same color. Both of these quantities are NP-hard to
compute. However, the Lovasz sandwich theorem states that

ω(G) ≤ ϑ(Ḡ) ≤ χ(G), (4.21)

where Ḡ is the complement graph of G. This is an amazing result since it gives some sense of the two
quantities that are NP-hard to compute.

Example: trace norm minimization. Let A : Rm×n → Rp be a linear map,

A(X) =

A1 •X
· · ·

Ap •X

 (4.22)

for matrices A1, . . . , Ap ∈ Rm×n. Finding the lowest-rank solution to an underdetermined system can be
expressed as

min
X

rank(X) (4.23)

subject to A(X) = b. (4.24)
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If all Ai are diagonal, then we recover the sparse linear system problem. Note that this problem is nonconvex,
since rank is a nonconvex function. The trace norm can act as a convex surrogate to the rank function:

min
X

‖X‖tr (4.25)

subject to A(X) = b. (4.26)

This is an analogy of replacing `0 norm with `1 norm in linear systems, but in matrices. The trace norm
minimization is an SDP. To show this, recall dual norm of trace norm

‖X‖tr = max
‖Y ‖op≤1

Y •X. (4.27)

Replacing trace norm in the criterion with the variational form, we can rewrite operator norm as SDP
constraints.

4.4.3 Conic programs

A conic program is an optimization problem of the form:

min
x

c>x (4.28)

subject to Ax = b (4.29)

D(x) + d ∈ K, (4.30)

where c, x ∈ Rn, A ∈ Rm×n, and b ∈ Rm; D : Rn → Y is a linear map, d ∈ Y for Euclidean space Y ; and
K ⊆ Y is a closed convex cone. This is again very similar to LP, the only distinction is the set of linear
inequalities are replaced with conic inequalities, i.e. D(x) + d �K 0 (see B&V for definition of �K). Notice
that if K = Rn+ the nonnegative orthant, i.e. the inequality has the form D(x) + d ≤ 0, we recover the LP;
similarly if K = Sn+, we recover SDP. Therefore we can see this is a very broad class of problems.

Example: second-order cone programs. A second-order cone program (SOCP) is an optimization
problem of the form:

min
x

c>x (4.31)

subject to ‖Dix+ d‖2 ≤ e
>
i x+ fi, i = 1, . . . , p (4.32)

Ax = b. (4.33)

This is a conic program with specific choice of K. In particular, it is a combination of second-order cones
(or Lorentz cones) that are defined as:

Q = {(x, t) : ‖x‖2 ≤ t} . (4.34)

From this definition it is easy to see

‖Dix+ d‖2 ≤ e
>
i x+ fi ⇐⇒

(
Dix+ d, e>i x+ fi

)
∈ Qi, (4.35)

for appropriate dimensions, then taking K = Q1 × · · · ×Qp will lead to the conic program form.

It is easy to see every LP is SOCP. Furthermore, to see every SOCP is an SDP, first recall the Schur
complement theorem: [

A B
B> C

]
� 0 ⇐⇒ A−BC−1B> � 0, (4.36)
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for A,C symmetric and C � 0. Apply this theorem to the following matrix,[
tI x
x> t

]
� 0 ⇐⇒ tI − xx>

t
� 0 ⇐⇒ ‖x‖2 ≤ t. (4.37)

Thus we can convert the second-order cone constraint to PSD constraint.

The relationship between Linear Program (LP), convex quadratic program (QP), second-order cone program
(SOCP), semidefinite program (SDP) and conic program (CP) in shown in the following figure

The relationship between convex problems and non-convex problems is shown in the following figure.


