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Intuition for Steepest descent: Close to gradient descent with a choice of norm to be used. If L2 is
chosen, it results exactly in gradient descent.

6.1 Gradient Boosting

Consider constructing a model as a weighted sum of trees (see Figure 6.1) that is used to predict measurements
xi ∈ Rp, i = 1, . . . n given the observations y = (y1, . . . , yn) ∈ Rn,

θi =

m∑
j=1

βj .Tj(xi), i = 1, . . . n (6.1)

Each of these trees produces an output xi given a predictor measurement. Typically, the space of all such
possible trees M is exponentially huge. For example, even if we restrict ourselves to a small set of trees of
depth 5, we can observe that the number of trees is exponential in number. Therefore, the space is too huge
to optimize and we can never get enough observations to solve it analytically.

Given this model, we would like to find the weights βj that minimizes some loss function L, say squared loss
L(yi, θi) = (yi − θi)2. Gradient boosting is basically a version of gradient descent forced to work with trees
and solve the following optimization problem:

min
β∈RM

n∑
i=1

L

yi, M∑
j=1

βj .Tj(xi)

 (6.2)

Figure 6.1: Model as a weighted sum of trees

We begin with an initial model, for example, take a single tree θ(0) = T0. At the kth iteration:
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1. Evaluate gradient g at current prediction θ(k−1),

gi

[
∂L(yi, θi)

∂θi

]
θi=θ

(k−1)
i

, i = 1, . . . n (6.3)

2. These gradients might not be always be a tree or sum of trees, therefore going away from the constraint
space. Gradient boosting now finds the tree that is closest to the negative gradients.

This problem is not typically hard to solve (approximately) for a single tree. This is the main novelty
in gradient boosting.

3. Update the prediction with some learning rate αk. Observe that such updates will always give predic-
tions that are weighted sum of trees, as desired.

θ(k) = θ(k−1) + αk.Tk (6.4)

We could also replace trees with any weak learner and derive an equivalent form for the boosted gradient.

Can we do better ?
We have seen that gradient descent in the case of convex, differentiable functions with Lipschitz continuous
gradients have a convergence rate of O(1/ε). However, there is a first-order method that has a convergence
rate of O(1/ε2).

6.2 Subgradient Basics

Subgradients are very central parts of convex analysis.In non-smooth minimization, subgradients will play
important roles.

6.2.1 Recap of Gradient Descent

Consider the following minimization problem:

minxf(x) (6.5)

Gradient descent can be used to minimize f(x) iterating the following steps:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, ... (6.6)

tk is the step size at the kth iteration. It can be chosen to be fixed and small, or chosen by backtracking line
search to guarantee the reduction of cost function value.

Downsides:

• f has to be differentiable. (Can be fixed by subgradient)

• Slow convergence. (Can be improved by introducing acceleration)
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6.2.2 Concept of Subgradient

Subgradient is a generalization of the concept of gradients to non-smooth functions. Given a convex and
differentiable function f , its first order approximation using gradient is always an underestimate of f :

f(y) ≥ f(x) +∇>(y − x) for all x, y (6.7)

Similarly, a subgradient of a convex function f at x is the set of g ∈ Rn such that:

f(y) ≥ f(x) + g>(y − x) for all y (6.8)

• For convex functions, such g always exists.

• If f is differentiable at x, then f has a unique subgradient at x which is exactly ∇f(x).

• Although the same definition of subgradients can also work for nonconvex functions, subgradients may
not exist at certain locations, even if they may be smooth.

• Two examples of nonconvex with no subgradients everywhere: f(x) = −x2 and f(x) = x3.

6.2.3 Examples of Subgradients

Figure 6.2: Illustration of the subgradients of three example nonsmooth functions. From left to right: 1.
absolute value; 2. l-2 norm; 3. l-1 norm. 4. pointwise max of two differentiable convex functions.

Absolute value The function of absolute value has the form: f : R → R, f(x) = |x|. The first image in
Fig. 6.2 illustrates the corresponding curve. The function is not differentiable at x = 0. Therefore taking
the definition of subgradient and substituting x = 0 into the definition, one gets:

|y| ≥ gy (6.9)

Consider both cases where y > 0 and y < 0, we can get −1 ≤ g ≤ 1. Thus:

• For x 6= 0, g = sign(x).

• For x = 0, g ∈ [−1, 1].
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l-2 norm The function of l-2 norm has the form: f : Rn → R, f(x) = ‖x‖2. The second image in Fig. 6.2
illustrates the corresponding curve. The gradient of the function is x/‖x‖2 at x ≥ 0 but not well defined
at x = 0 since the denominator will become 0. Again taking the definition of subgradient and substituting
x = 0 in to the definition, one gets:

‖y‖2 ≥ g>y (6.10)

Using Cauchy-Schwarz inequality, we have g>y ≤ |g>y| ≤ ‖g‖2‖y‖2. To ensure that g>y ≤ ‖y‖2 holds, we
need to make sure that ‖g‖2‖y‖2 ≤ ‖y‖2 holds, which gives ‖g‖2 ≤ 1. Thus:

• For x 6= 0, g = x/‖x‖2.

• For x = 0, g ∈ {g|‖g‖2 ≤ 1}.

l-1 norm The function of l-1 norm has the form: f : Rn → R, f(x) = ‖x‖1. The third image in Fig.
6.2 illustrates the corresponding curve. For any x where xi 6= 0,∀i, The ith component gi of the function
gradient g is sign(xi).

When there exist certain xi = 0, the function becomes nondifferentiable. The subgradient is simply a
multidimensional extension of the absolute value case at each dimension. Therefore the subgradient of l-1
norm is:

• For xi 6= 0, gi = sign(xi).

• For xi = 0, gi ∈ [−1, 1].

Pointwise max of two differentiable convex functions The function has the form: f1, f2 : Rn →
R, f(x) = max{f1(x), f2(x)}. The fourth image in Fig. 6.2 illustrates the corresponding curve. The function
is differentiable at any location where f1(x) > f2(x) or f1(x) < f2(x). At these locations the subgradient is
uniquely equal to the gradient of the larger function. However at locations where f1(x) = f2(x), the function
becomes nondifferentiable. As a result:

• For f1(x) > f2(x), g = ∇f1(x).

• For f1(x) < f2(x), g = ∇f2(x).

• For f1(x) = f2(x), g = t∇f1(x) + (1− t)∇f2(x), 0 ≤ t ≤ 1.

6.2.4 Subdifferential

For convex functions, the subdifferential is defined as: ∂f(x) = {g ∈ Rn : g is a subgradient of f at x}.
There are several associated properties:

• For ∂f(x) is closed and convex for both convex and nonconvex functions (directly comes from the
definition of subgradient).

• Nonempty (but can be empty for nonconvex f).

• f is differentiable indicates ∂f(x) = ∇f(x).

• ∂f(x) = {g} indicates f is differentiable at x and ∇f(x) = g (Can use this property to prove the
smoothness of some nonobvious convex functions)
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6.2.5 Connection to Convex Geometry

Given a convex set C ⊂ Rn, the indicator function IC : Rn → R is defined as:

IC(x) = I{x ∈ C}

{
0 if x ∈ C
∞ if x not in C

(6.11)

Then for x ∈ C, ∂IC(x) = NC(x) = {g ∈ Rn : g>x ≥ g>y,∀y ∈ C}.

6.3 Subgradient Calculus

Subgradients are important for two reasons:

• Convex analysis: Optimality characterization of convex functions via subgradient,monotonicity, close
relationship to duality

• Convex optimization: Minimize (almost) any convex function via subgradients

Here, we provide some basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0 (if a < 0, it will turn the function into a concave function)

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then ∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...mfi(x), then ∂f(x) = conv(
⋃
i:fi(x)=f(x)

∂fi(x))
i.e., convex hull of union of subdifferentials of ’active’ functions at x
specialcase : if fi differentiable, use its differential instead.

• General pointwise maximum: if f(x) = naxs∈S , then ∂f(x) ⊆ cl{conv(
⋃
s:fs(x)=f(x)

∂fs(x))} and

under some regularity conditions (on S, fs), we get an equality above

• Norms: Important special case, f(x) = ||xp||. Let q be such that 1/p + 1/q = 1, then ||x||p =
max||z||q≤1z

Tx. Hence, ∂f(x) = argmax||z||q≤1z
Tx

6.4 Optimality Condition

For any f (convex or not),

f(x∗) = minxf(x)⇐⇒ 0 ∈ ∂(x∗)

i.e., x∗ is a minimizer iff 0 is a subgradient of f at x∗. The reason is that g = 0 being a subgradient means
that for all y,

f(y) ≤ f(x∗) + 0T (y − x∗) = f(x∗)

Note: The implication for a convex and differentiable function f , with ∂f(x) = {∇f(x)}
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6.5 Derivation of First-order Optimality

Recall that for f convex and differentiable, the problem

minxf(x)s.t.x ∈ C

is solved at x iff

∇f(x)T (y − x) ≤ 0forally ∈ C

Intuiviely says that gradient increases as we move away from x.

Proof: First recast problem as: minxf(x) + IC(x) Now apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x))
But

0 ∈ ∂(f(x) + IC(x))
⇐⇒ 0 ∈ {∇f(x)}+Nc(x)
⇐⇒ −∇f(x) ∈ Nc(x)

⇐⇒ −∇f(x)Tx ≤ −∇f(x)T y for all y ∈ C
⇐⇒ ∇f(x)T (y − x) ≤ 0 for all y ∈ C

Note: the condition 0 ∈ {∇f(x)} + Nc(x) is a fully general condition for optimality in a convex problem.
But this is not always easy to work with (KKT conditions, later, are easier)

6.6 Example: Distance to a Convex Set

The problem can be formalized as follows:

dist(x,C) = miny∈C ||y − x||2

Write dist(x,C) = ||x− PC(x)||2, where PC(x) is the projection of x onto C. Then when dist(x,C) > 0,

∂dist(x,C) =

{
x− PC(x)

||x− PC(x)||2

}
Only has one element, so in fact dist(x,C) is differentiable and this is its gradient. Thus, we will only show
one direction, i.e., that

x− PC(x)

||x− PC(x)||2
∈ ∂dist(x,C)

Write u = PC(x). Then by first-order optimality conditions for a projection,

(u− x)T (y − u) ≤ 0 for all y ∈ C

Hence
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C ⊆ H = {y : (u− x)T (y − u) ≥ 0}

Claim: for any y,

dist(y, C) ≥ (x− u)T (y − u)

||x− u||2

Check: first, for y ∈ H, the right-hand side is ≤ 0. Now for y /∈ H, we have (x− u)T (y− u) = ||x− u||2||y−
u||2cosθ where θ is the angle between x− u and y − u. Thus

(x− u)T (y − u)

||x− u||2
= ||y − x||2cosθ = dist(y,H) ≤ dist(y, C)

as desired.
Using the claim, we have for any y

dist(y, C) ≥ (x− u)T (y − x+ x− u)

||x− u||2
= ||x− u||2 +

(
x− u
||x− u||2

)T
(y − x)

Hence g = (x− u)/||x− u||2 is a subgradient of dist(x,C) at x.


