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12.1 Recap on duality

Given a minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, · · · ,m
lj(x) = 0, j = 1, · · · , r

(12.1)

We define the Lagrangian:

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x) (12.2)

and Lagrange dual function:
g(u, v) = min

x
L(x, u, v) (12.3)

The subsequent dual problem is
max
u,v

g(u, v)

subject to u ≥ 0
(12.4)

Recall the important properties of dual problems from previous lectures:

• The dual problem is always convex no matter if the primal problem is convex, i.e., g is always concave.

• The primal and dual optimal values, f∗ and g∗, always satisfy weak duality: f∗ ≥ g∗.

• Slater’s condition: for convex primal, if there is an x such that

h1(x) < 0, · · · , hm(x) < 0 and l1(x) = 0, · · · , lr(x) = 0 (12.5)

then strong duality holds: f∗ = g∗. Note that the condition can be further relaxed to strict inequalities
over the nonaffine hi, i = 1, · · · ,m.

12.2 Karush-Kuhn-Tucker conditions

Given general problem
min
x

f(x)

subject to hi(x) ≤ 0, , i = 1, · · · ,m
lj(x) = 0 , j = 1, · · · , r

(12.6)

The Karush-Kuhn-Tucker conditions or KKT conditions are:
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• 0 ∈ ∂f(x) +
∑m
i=1 ui∂hi(x) +

∑r
j=1 vj∂lj(x) (stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, lj(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i

An important conclusion of KKT conditions is: KKT conditions are

• always sufficient

• necessary under strong duality

Under strong duality assumption, KKT conditions are both sufficient and necessary, as stated in Theorem
12.1:

Theorem 12.1 For a problem with strong duality (e.g., assume Slater’s condition: convex problem and there
exists x strictly satisfying non-affine inequality constraints),

x∗ and u∗, v∗ are primal and dual solutions

⇐⇒ x∗ and u∗, v∗ satisfy the KKT conditions

Proof: We first prove necessity:

Let x∗ and u∗, v∗ be primal and dual solutions with zero duality gap (strong duality holds, e.g., under
Slater’s condition). Then

f(x∗) = g(u∗, v∗)
= min

x
f(x) +

∑m
i=1 u

∗
i hi(x) +

∑r
j=1 v

∗
j lj(x)

≤ f(x∗) +
∑m
i=1 u

∗
i hi(x

∗) +
∑r
j=1 v

∗
j lj(x

∗)

≤ f(x∗)

(12.7)

Therefore, all these inequalities are actually equalities. Hence we have

• The point x∗ minimizes L(x, u∗, v∗) over x ∈ Rn, i.e.,

0 ∈ ∂xL(x∗, u∗, v∗) (12.8)

0 ∈ ∂f(x∗) +

m∑
i=1

u∗i ∂hi(x
∗) +

r∑
j=1

v∗j ∂lj(x
∗) (12.9)

This is stationarity.

•
∑m
i=1 u

∗
i hi(x

∗) = 0, since each term here is ≤ 0, this implies u∗i hi(x
∗) = 0 for every i. This is exactly

comlementary slackness.

• Primal and dual feasibility hold by virtue of optimality.

Now that we have proved necessity, we move on to prove sufficiency. If there exists x∗, u∗, v∗ that satisfy
the KKT conditions, then

g(u∗, v∗) = f(x∗) +
∑m
i=1 u

∗
i hi(x

∗) +
∑r
j=1 v

∗
j lj(x

∗) (stationarity)

= f(x∗) (complementary slackness)
(12.10)
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Therefore the duality gap is zero (and x∗ and u∗, v∗ are primal and dual feasible) so x∗ and u∗, v∗ are primal
and dual optimal. Hence, we have shown the sufficiency.

Note that concerning the stationary condition, for a differentiable function f , we cannot use ∂f(x) = {∇f(x)}
unless f is convex.

For unconstrained problems, the KKT conditions are just the subgradient optimality condition.

For general problems, the KKT conditions could have been derived entirely from studying optimalit via
subgradients

0 ∈ ∂f(x∗) +

m∑
i=1

N{hi≤0}(x
∗) +

r∑
j=1

N{lj=0}(x
∗) (12.11)

where NC(x) is the normal cone of C at x.

12.3 Examples

12.3.1 Example: quadratic with equality constraints

Consider for Q � 0,
min
x∈Rn

1
2x

TQx+ cTx

subject to Ax = 0
(12.12)

E.g., as we will see, this corresponds to Newton step for equality-constrainted problem minx f(x) subject to
Ax = b.

This problem is a convex problem with no inequality constraints, so by KKT conditions, x is a solution if
and only if [

Q AT

A 0

] [
x
u

]
=

[
−c
0

]
(12.13)

for some u. Eq. (12.13) is a linear system combining stationarity and primal feasibility. Complementary
slackness and dual feasibility are vacuous in this case.

12.3.2 Example: water-filling

Consider the problem
min
x∈Rn

−
∑n
i=1 log(αi + xi)

subject to x ≥ 0, 1Tx = 1
(12.14)

This problem arises from information theory, where for each channel i, xi represents the allocated transmitter
power and log(αi + xi) is the communication rate. The problem is to maximize the total communication
rate under a budget of total power one.

The KKT conditions are:
−1/(αi + xi)− ui + v = 0, i = 1, · · · , n (12.15)

ui · xi = 0, i = 1, · · · , n, x ≥ 0, 1Tx = 1, u ≥ 0 (12.16)

After eliminating u, we have:
1/(αi + xi) ≤ v, i = 1, · · · , n (12.17)

xi(v − 1/(αi + xi)) = 0, i = 1, · · · , n, x ≥ 0, 1Tx = 1 (12.18)
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We argue that if v ≥ 1/αi, then xi must be 0; if v < 1/αi, then xi = 1/v − αi. Using the primal feasibility
1Tx = 1 we need to solve the following problem to get v:

n∑
i=1

max{0, 1/v − αi} = 1 (12.19)

This is a univariate equation, piecewise linear in 1/v and not hard to solve. The reduce problem is called
water-filling (Figure 12.1).

Figure 12.1: Water-filling illustration

The αi can be thought as the ground level above patch i. If we flood the region with total amount of water
1, then the water depth 1/v satisfies

∑n
i=1 max{0, 1/v − αi} = 1.

12.3.3 Example: support vector machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, the support vector machine problems is:

min
β,β0,ξ

1
2‖β‖

2
2 + C

∑n
i=1 ξi

subject to ξi ≥ 0, i = 1, · · · , n
yi(x

T
i β + β0) ≥ 1− ξi, i = 1, · · · , n

(12.20)

Introduce dual variables v, w ≥ 0, from the KKT stationarity condition we have

0 =

n∑
i=1

wiyi, β =

n∑
i=1

wiyixi, w = C1− v (12.21)

From the complementary slackness we have

viξi = 0, wi(1− ξi − yi(xTi β + β0)) = 0, i = 1, · · · , n (12.22)

Hence at optimality we have β =
∑n
i=1 wiyixi, and wi is nonzero only if yi(x

T
i β + β0) = 1− ξi. Such points

i are calle the support points
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• For support point i, if ξi = 0, then xi lies on edge of margin, and wi ∈ (0, C];

• For support point i, if ξi 6= 0, then xi lies on wrong side margin, and wi = C.

Note that KKT conditions do not really give us a way to find solution, but gives a better understanding. In
fact, we can use this to screen away non-support points before performing optimization.

12.4 Constrained and Lagrange forms

Often in statistics and machine learning we will switch back and forth between constrained form, where
t ∈ R is a tuning parameter,

min
x
f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x
f(x) + λ · h(x) (L)

and claim these are equivalent. We will show that this is almost always true assuming convexity of f and h.

(C) to (L): if problem (C) is strictly feasible, then strong duality holds, and there exists some λ > 0 (dual
solution) such that any solution x∗ in (C) minimizes

f(x) + λ · (h(x)− t) (12.23)

so x∗ is also a solution in (L).

(L) to (C): if x∗ is a solution in (L), then the KKT conditions for (C) are satisfied by taking t = h(x∗), so
x∗ is a solution in (C).

Conclusion: ⋃
λ≥0
{solutions in (L)} ⊆

⋃
t

{solutions in (C)}⋃
λ≥0
{solutions in (L)} ⊇

⋃
tsuchthat(C)

isstrictlyfeasible

{solutions in (C)} (12.24)

This is nearly a perfect equivalence. Note: when the only value of t that leads to a feasible but not strictly
feasible constraint set is t = 0, i.e.,

{x : h(x) ≤ t} 6= φ, {x : h(x) < t} 6= φ ⇒ t = 0 (12.25)

(e.g., this is true if h is a norm) then we do get perfect equivalence.

12.5 Uniqueness in l1 penalized problems

Using the KKT conditions and simple probability arguments, we have the following (perhaps surprising)
result:
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Theorem 12.2 Let f be differentiable and strictly convex, let X ∈ Rn×p, λ > 0. Consider

min
β∈Rp

f(Xβ) + λ‖β‖1 (12.26)

If the entries of X are drawn from a continuous probability distribution (on Rnp), then with probability 1
there is a unique solution and it has at most min{n, p} nonzero components.

Proof: The KKT conditions are

si ∈
{
{sign(βi)} ifβi 6= 0
[-1,1] ifβi = 0

, i = 1, · · · , n (12.27)

Note that Xβ, s are unique. Define S = {j : |XT
j ∇f(Xβ)| = λ}, then S is also unique as both X and Xβ

are unique. Note that any solution satisfies βi = 0 for all i /∈ S.

First assume that rank(XS) < |S| (here X ∈ Rn×|S| is a submatrix of X corresponding to columns in S).
Then for some i ∈ S,

Xi =
∑

j∈S{i}

cjXj (12.28)

for constants cj ∈ R, hence

siXi =
∑

j∈S{i}

(sisjcj) · (sjXj) (12.29)

Taking an inner product with −∇f(Xβ),

λ =
∑

j∈S{i}

(sisjcj)λ, i.e.,
∑

j∈S{i}

sisjcj = 1 (12.30)

In other words, we have proved that rank(XS) < |S| implies siXi is the affine span of sjXj , j ∈ S
{i} (subspace of dimension ¡ n)

We say that the matrix X has columns in general position if any affine subspace L of dimension k < n does
not contain more than k + 1 elements of {±X1, · · · ,±Xp} (excluding antipodal pairs)

It is straightforward to show that, if the entries of X have a density over Rnp, then X is in general position
with probability 1.

Figure 12.2: General position
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Therefore, if entries of X are drawn from continuous probability distribution, any solution must satisfy
rank(XS) = |S|.

Recalling the KKT conditions, this means the number of nonzero components in any solution at most
≤ |S| ≤ min{n, p}. Further, we can reduce our optimization problem (by partially solving) to

min
βS∈R|S|

f(XSβS) + λ‖βS‖1 (12.31)

Finally, strict convexity implies uniqueness of the solution in this problem, and hence in our original problem.

12.6 Back to duality

One of the most important uses of duality is that, under strong duality, we can characterize primal solutions
from dual solutions.

Recall that under strong duality, the KKT conditions are necessary for optimality. Given dual solutions u∗,
v∗, any primal solution x∗ satisfies the stationarity condition

0 ∈ ∂f(x∗) +

m∑
i=1

u∗i ∂hi(x
∗) +

r∑
j=1

v)j∗∂lj(x
∗) (12.32)

In other words, x∗ solves minx L(x, u∗, v∗)

• Generally, this reveals a characterization of primal solutions

• In particular, if this is satisfied uniquely (i.e., above problem has a unique minimizer), then the corre-
sponding point must be the primal solution
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