
10-725/36-725: Convex Optimization Fall 2015

Lecture 14: October 15 2015
Lecturer: Lecturer: Ryan Tibshirani Scribes: Benedikt Boecking, Sibi Venkatesan

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

14.1 Dual Cones (previous Lecture)

We recall that a cone K ⊆ Rn is a set such that x ∈ K ⇒ tx ∈ K for all t ≥ 0. Now, the dual cone K∗ of
K is the set of non-negative dot products of y ∈ Rn and x ∈ K. More formally, the dual cone is defined as

K∗ = {y ∈ Rn : yTx ≥ 0,∀x ∈ K}.

Importantly, the dual cone is always a convex cone, even if K is not convex. In addition, if K is a closed and
convex cone, then K∗∗ = K. Note that y ∈ K∗ ⇐⇒ the halfspace {x ∈ Rn} contains the cone K. Figure
14.1 provides an example of this in R2.

Figure 14.1: When y ∈ K∗ the halfspace with inward normal y contains the cone K (left). Taken from [BL]
page 52.

14.1.1 Examples of Dual Cones

• Linear subspace: the dual cone of a linear subspace V is its orthogonal complement V ⊥. E.g.
(row(A))∗ = null(A), where null(A) denotes the nullspace of A.

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ||x|| ≤ t}.

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ||y||∗ ≤ s}.

14-1

14-2 Lecture 14: October 15 2015

• Positive semidefinite cone: the convex cone Sn+ is a self-dual, meaning (Sn+)∗ = Sn+ Why? Check
that

Y � 0⇐⇒ tr(Y X) ≥ 0 for all X � 0

14.2 Newton’s method

We will start by considering the simple setting of an unconstrained, smooth optimization problem

min
x
f(x)

where our function f is twice differentiable and the domain of the function is dom(f) = Rn. Recall that
gradient descent chooses an initial point x(0) ∈ Rn and repeats the following

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, 3, ...

i.e. it moves in the direction of the negative gradient. In comparison, Newton’s method repeats similar steps
with the crucial difference that it moves in the direction of the negative inverse of the Hessian times the
gradient

x(k) = x(k−1) − (∇2f(x(k−1)))−1∇f(x(k−1)), k = 1, 2, 3, ...

Note, that there is no notion of a step size in the above definition. This is often referred to as pure Newton’s
method. Further, note that we can avoid calculating the inverse in each iteration by solving a linear system
to obtain the direction v(k)

∇2f(x(k−1))vk = ∇f(x(k−1)).

We can then define the updates in terms of v(k), namely

x(k) = x(k−1) − vk.

Newton’s method can be interpreted as doing a better quadratic approximation than gradient descent where
the quadratic term uses the actual Hessian

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x).

Minimizing this second order Taylor expansion at y yields the Newton update. Figure 14.2 Shows a com-
parison of gradient descent and Newton’s method.

14.2.1 Linearized optimality condition

Another way of interpreting Newton’s method is to solve the linearized first order optimality condition. We
seek the direction v at step x such that ∇f(x+ v) = 0 for a smooth and convex f . Now consider linearizing
this condition via a first order Taylor expansion on the gradient equation (think of x being fixed)

0 = ∇f(x+ v) ≈ ∇f(x) +∇2f(x)(x+ v − x) = ∇f(x) +∇2f(x)v

and solving for v, which yields v = −(∇2f(x)−1∇f(x).

Lecture 14: October 15 2015 14-3

Figure 14.2: This figure compares update steps of gradient descent (black) to Newtons method (blue) for
the function f(x) = (10x21 + x22)/2 + 5log(1 + e−x1−x2). Each point in this figure is a successive update.
Notice that gradient descent takes many more steps than Newton’s method, that the update directions are
different, that there is a big difference in cost for each update, and that gradient descent moves orthogonal
to the contour lines.

14.2.2 Affine invariance of Newton’s method

An important property of Newton’s method is the affine invariance of the Newton step. In the following
example we will consider linear scaling. Given f , a non-singular matrix A ∈ Rn×n, let x = Ay and g(y) =
f(Ay). The Newton steps on g are

y+ = y −
(
∇2g(y)

)−1∇g(y)

= y −
(
AT∇2f(Ay)A

)−1
AT∇f(Ay)

= y −A−1
(
∇2f(Ay)

)−1∇f(Ay)

Note that we achieve the above simply by applying the chain rule twice. Thus we get

Ay+ = Ay − (∇2f(Ay))−1∇f(Ay)

i.e.

x+ = x− (∇2f(x))−1∇f(x)

Above we have shown invariance under a linear transformation, but if the transformation were affine, i.e.
x = Ay + b, we would come to the same invariance conclusion. Note that affine invariance of the Newton
step means that progress is independent of problem scaling. We recall that this is not true for gradient
descent.

14-4 Lecture 14: October 15 2015

14.2.3 Newton decrement

The Newton decrement at a point x is

λ(x) = (∇f(x)T (∇2f(x))−1∇f(x))1/2

and it relates to the difference between f(x) and the minimum of its quadratic approximation:

f(x)−min
y

(
f(x) +∇f(x)T (y − x) +

1

2
(y − x)T∇2f(x)(y − x)

)
= f(x)−

(
f(x)− 1

2
∇f(x)T (∇2f(x))−1∇f(x)

)
=

1

2
λ(x)2

We can therefore think of λ(x)2/2 as an approximate bound on the suboptimality gap f(x)− f∗.

Another interpretation of the Newton decrement uses the update direction of the newton step. If the Newton
direction is v = −(∇2f(x))−1∇f(x), then

λ(x) =
(
vT∇2f(x)v

)1/2
= ||v||∇2f(x)

meaning that λ is the length of the Newton step in the norm defined by the Hessian ∇2f(x). Note that the
Newton decrement, like the Newton steps, are affine invariant; i.e., if we were to define g(y) = f(Ay) for a
nonsingular matrix A, then λg(y) would match λf (x) at x = Ay.

14.3 Backtracking line search

Pure Newton’s method doesn’t necessarily converge. As described below, Newton’s method has a very fast
convergence rate. This means that it is also possible for Newton’s method to diverge rapidly. If we just take
full Newton steps, x+ = x− (∇2f(x))−1∇f(x), it is possible to diverge depending on where you start.

Due to this, pure Newton’s method is very rarely used in practice. Typically, Newton’s method also uses
backtracking line search in a very similar fashion to gradient descent. We pick two parameters, α ∈ (0, 12]
and β ∈ (0, 1) and perform very similar updates.

At each Newton iteration, initialize t = 1, v = −(∇2f(x))−1∇f(x). While

f(x+ tv) > f(x) + αt∇f(x)T v

shrink t = βt. Note that ∇f(x)T v = −λ2(x). Since this can be pre-computed, all we have to do every
iteration is function evaluations along a line.

14.3.1 Example: Newton’s method vs Gradient Descent

Here is an example of logistic regression with 500 observations and 100 variables. This is not a quadratic
so neither method will converge to an exact solution. The performance of the algorithms (both using
backtracking line search) has been shown in the figure below. The plot shows the number of iterations vs.
the difference between current objective value and minimum. The actual minimum was using R’s GLM

Lecture 14: October 15 2015 14-5

Figure 14.3: Newton’s Method vs. Gradient Descent. Taken from Ryan Tibshirani’s slides.

package which uses Newton’s method itself. Newton’s method reaches converges after around 7 iterations,
while Gradient Descent reaches around the same accuracy after 65-70 iterations. Newton’s method has
”quadratic” convergence, as described below.

Note: It is a bit unfair to compare these methods based on number of iterations, as the cost of each iteration
is very different. For Newton’s method, we need to compute the Hessian, gradient and solve a linear system
of equations. For Gradient Descent, we only need the gradient.

14.4 Convergence Analysis

Assume that we have a convex and twice-differentiable function f , where the domain of f is Rn. Further,
we assume that:

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

Given that ∇2f : Rn → Rn×n, this means that for all x, y, we have ||∇2f(x)−∇2f(y)||F ≤M ||x−y||2.

The first two conditions above guarantee that Gradient Descent will have a linear convergence rate: it will
converge as ck where k is the number of iterations, for c < 1. But c depends adversely on the condition
number of the hessian: L

m . If this is large, then c is close to 1, and convergence of Gradient Descent will be
very slow.

The following is the convergence result for Newton’s method using backtracking line search for a function f
which satisfies the above properties.

14-6 Lecture 14: October 15 2015

f(x(k))− f? ≤

(f(x(0))− f?)− γk if k ≤ k0

2m3

M2

(
1

2

)2k−k0+1

if k > k0

where α, β are the backtracking line search parameters, γ =
αβ2η2m

L2
, η = min{1, 3(1− 2α)}m

2

M
, and k0 is

the number of steps until ||∇f(x(k0+1))||2 < η.

Thus, Newton’s method converges in two stages, determined by some number of iterations k0. The first
stage of convergence is called the damped phase. It tells us that every iteration, we move γ closer to the
optimum. The second stage of convergence is called the pure phase. Convergence is extremely quick, and is
known as quadratic convergence.

Note that the bounds for convergence get worse the more poorly conditioned the function. If the condition
number if very large, then γ would be tiny. This means that we would not expect to make much progress in
each iteration during the first stage.

Here are a few more details on the different phases, given γ > 0 and 0 < η ≤ m

M2
.

• Damped phase: ||∇f(x(k))||2 ≥ η and

f(x(k+1))− f(x(k)) ≤ −γ

Backtracking line search in this phase will typically select a step-size of less than 1. Thus, this phase
is referred to as damped.

• Pure phase: ||∇f(x(k))||2 < η and

M

2m2
||∇f(x(k+1))||2 ≤

(
M

2m2
||∇f(x(k))||2

)2

Backtracking line search will exit immediately when t = 1, and thus it is called pure. Once we enter

the pure phase, we won’t leave, since when η ≤ m2

M
:

2m2

M

(
M

2m2
η

)2

< η

Let’s unravel this result a bit. Say we want to reach f(x(k)) − f? ≤ ε. The overall number of iterations
needed to converge to this accuracy is:

f(x(0))− f?

γ
+ log log

(ε0
ε

)

To enter the pure Newton phase, we need at most
f(x(0))− f?

γ
iterations. This is easy to see as if we were

to take more than this, then the difference f(x(k))− f? would be negative which is not possible.

Once we are in the pure phase, we can see that the convergence rate is log log
(ε0
ε

)
, where ε0 =

2m3

M2
. This

is vastly different from log
1

ε
for Gradient Descent. However, this is only a local convergence rate. We need

a certain number of iterations to enter this phase to begin with. If we were to look at a global convergence
rate, then Newton’s rate might still have only a linear convergence rate.

Lecture 14: October 15 2015 14-7

14.4.1 Self-concordance

The above bound for convergence still depends on the Lipschitz and strong-convexity parameters of the
problem: L,m,M . But the algorithm itself does not depend on these, as it is affine invariant. If we had
a poorly conditioned Hessian, we could potentially transform it into a coordinate system where it was no
longer poorly conditioned. Thus, the bound was bothersome since it represented a gap between theory and
practice. The concept of self-concordance allows us to bridge this gap and was thus a very big deal when it
was discovered.

A convex function f on R is called self-concordant if:

|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x

For example consider f(x) = − log(x). Then f ′(x) = − 1
x , f ′′(x) = 1

x2 and f ′′′(x) = − 2
x3 . It’s easy to check

that this is indeed self-concordant.

The analysis of Newton’s method for self-concordant functions is scale-free; it does not depend on the scaling
parameters of the problem. Here is the relevant result from Nesterov and Nemirovskii. Newton’s method on
self-concordant functions with backtracking requires at most

C(α, β)(f(x(0))− f?) + log log
1

ε

iterations to reach f(x(0)) − f? ≤ ε. Here, C(α, β) is a constant that only depends on the backtracking
parameters. This result is taken from a book on second-order methods and interior point methods by
Nesterov and Nemirovskii [NN].

14.5 Comparison to First-Order methods

Here are some high-level comparisons.

• Memory: Each iteration of Newton’s method requires O(n2) storage, as we have to store the n × n
Hessian. We cannot store this in memory as it changes every iteration. Gradient Descent only requires
O(n) storage of the gradient at every iteration.

• Computation: In each iteration of Newton’s method, we need to solve a linear system which takes
O(n3) flops in general. Each Gradient Descent iteration only requires O(n) flops for simple vector
operations.

• Backtracking: This has roughly the same cost across the two methods: both require O(n) flops. We
can compute the update step for Newton’s method before we begin backtracking.

• Conditioning: In principle Newton’s method is not affected by a problem’s conditioning: Any affine
transformation will leave the steps unchanged. Gradient Descent can perform poorly if the problem
does not have good conditioning.

• Fragility: This is basically the issue of numerical stability. Newton’s method is more susceptible to
numerical errors since solvers are usually sensitive to conditioning. Thus, Newton steps could be noisy
or erroneous. Gradient Descent is generally more robust to stability issues.

14-8 Lecture 14: October 15 2015

14.5.1 Example Revisited: Newton’s method vs Gradient Descent

Here is the same example of the two methods on logistic regression. The plot now shows time on the x-axis
instead of the number of iterations, while y-axis remains the same.

Figure 14.4: Newton’s Method vs. Gradient Descent. Taken from Ryan Tibshirani’s slides.

Each Newton step takes O(p3) time while each Gradient step takes O(p) time for p variables. So this is
slightly more favorable to Gradient Descent. However, we still do see the quadratic convergence behavior
for Newton’s method, which doesn’t exist for Gradient Descent.

14.5.2 Sparse and Structured Problem

There are some situations where Newton’s method will perform well. If the Hessian of our function is sparse
and structured, and if we can solve linear systems efficiently and reliably, we would want to use Newton’s
method.

For example, if Hessian is banded, then storage and computation time (solving linear systems) are both O(n)
for n variables. This puts Newton’s method on the same scale as a first-order method; it does not suffer
from some of its main setbacks on general problems.

14.6 Equality-constrained Newton’s method

Here is a brief discussion of Newton’s method applied to problems with equality constraints. Consider the
problem:

min f(x) subject to Ax = b

There are three things we can do:

Lecture 14: October 15 2015 14-9

• Eliminate the equality constraints: We can re-parameterize our problem in terms of the null-space
of A, i.e. we write x = My + x0 where M spans the null-space of A and Ax0 = b.

While this is a reasonable idea, there are a couple of problems. This requires us to find M , a basis for
the null-space. Also, it might ruin any structure we previously had in the problem. For example, the
Hessian of the re-parameterized problem might not be sparse, even if that of the original problem was.

• Derive the dual: If we work with the dual problem, we see that the linear equality constraint gets
lifted up into the criterion itself: −f∗(−AT v)− bT v
But it’s not always that simple as we need to still compute the conjugate function f∗. Further, we
need to be able to relate the solutions of the primal and dual problems, x∗ and v∗.

• Equality-constrained Newton: This is often the most straight-forward option, and is described in
a little more detail below.

In equality-constrained Newton’s method, we take Newton steps as we did before. But for our step direction,
instead of just minimizing the quadratic approximation of f , we add a constraint that we must respect our
equality constraint. In particular:

x+ = x+ tv

v = arg min
z:Az=0

∇f(x)T (z − x) +
1

2
(z − x)T∇2f(x)(z − x)

Thus, if we move along v from a feasible point, we will still remain at a feasible point.

From the KKT conditions, we see that this reduces to solving a single linear system as follows:[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]
Solving this system in v gives us the equality-constrained step direction. This system is often sparse and
structured, as the structure in the Hessian is preserved. We could even do some sort of block-decomposition
to solve this in a more refined manner.

References

[BL] S. Boyd and L. Vandenberghe, “Convex Optimization,” Chapter 4

[NN] Y. Nesterov and A. Nemirovskii, “Interior-point polynomial methods in convex program-
ming,” Chapter 2

