
10-725/36-725: Convex Optimization Fall 2015

Lecture 19: November 5
Lecturer: Ryan Tibshirani Scribes: Hyun Ah Song

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 Last time: review of optimization toolbox

Throughout the course, we have learned about several optimizaiton tools, including first order methods, sec-
ond order methods, and interior point methods. Using this toolbox of optimization, we can solve interesting
class of problems. Last time, we went through a big algorithm of table that tells us what method to use for
what types of problems. In this lecture, we will go through high-level reasoning for regularized estimation
problems.

19.2 Sum of norms regularization

The class of problem we will go through in this lecture is called sums of norms regularization problem. It
has a standard following form.

min
β

f(β) + λ

J∑
j=1

‖Djβ‖qj . (19.1)

Here, f : Rp → R is a smooth, convex function, Dj ∈ Rmj×p is a penalty matrix, qj is a norm parameter for
j = 1, . . . , J , and λ ≥ 0 is a regularization parameter.

19.2.1 A special example: Lasso

With J = 1, D = I, q = 1, the sums of norms regularization problem becomes a form of lasso problem.

f(β) = ‖y −Xβ‖22. (19.2)

Unpenalized intercept can be included by adding a column of zeros to D.

19-1

19-2 Lecture 19: November 5

19.3 Fused lasso or total variation denoising

19.3.1 1d

If we let J = 1, q = 1, D as following where we have −1 in the diagonal, 1 in the super-diagonal, and 0
elsewhere,

D =

−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

0 0 0 −1 1

 (19.3)

then ‖Dβ‖1 =
∑n−1
i=1 |βi − βi+1|. This problem is called fused lasso or total variation denoising in 1d. Here,

we are regularing the differences in β, (i.e. promoting sparsity in the differences β̂i − β̂i+1, so that there

are β̂i = β̂i+1 in many places. Here we are not sparsifying β itself. Then the solution β̂ we get is piecewise
constant.

This setting is used commonly for signal approximation, where we want to estimate the average of the
observations in β̂. In Figure 19.1, solution β̂ of the cases where f is defined for (a) Gaussian loss f(β) =
1
2

∑n
i=1(yi−βi)2 and (b) logistic loss f(β) =

∑n
i=1(−yiβi+log(1+eβi)) is shown. We see that in the solution

(a) (b)

Figure 19.1: Fused lasso example - 1d. (a) Gaussian loss, and (b) Logistic loss

β, it captures the input pattern with structure in the signal in form of piecewise constant. For the logistic
loss case, we also observe that β̂ is approximated to either 0 or 1.

19.3.2 Graph

We can generalize D and design the fused lasso (or total variation denoising) where it is associated with a
graph. Given a graph G = ({1, . . . , n}, E), let D be a |E|×n matrix, where Dl = (0, . . . ,−1, . . . , 1, . . . , 0) for
the lth row if el = (i, j). Then we have ‖Dβ‖1 =

∑
(i,j)∈E |βi−βj |. As shown in Figure 19.2 (a), we see that

we have solution is piecewise constant over grpah, β̂i = β̂j for (i, j) ∈ E. In Figure 19.2 (b) and (c), we have
cases where we have a Gaussian loss f(β) = 1

2

∑n
i=1(yi − βi)2 for 2d graph of an image, and Chicago crime

rate graph, respectively. We see the estimation shows smoothened version of the original noisy data, where

Lecture 19: November 5 19-3

it shows distinct regions of a uniform color across the vertices within each region. This seems reasonable as
solution for such cases of image or regional analysis.

(a) (b) (c)

Figure 19.2: Fused lasso example for graph.

19.4 Fused lasso with a regressor matrix

Until now, we have been looking at signal approximation problems, where we seek an output that is a
smoothened approximation of the input data. Now, we will consider a more complicated problem where we
have a regressor matrix, so that instead of imposing a structure in the output, we are imposing a structure
in the weights that correspond to the coefficients of the regressors, which forces coefficients to be constant
over graph. This enables us to find the groups of related predictors.

Let X ∈ Rn×p a predictor matrix with structure in its columns that have been measured over nodes of a
graph. We can consider the case where J = 1, q = 1 with fused lasso D over graph, and Gaussian loss
function f(β) = 1

2

∑n
i=1(yi − xTi β)2 or logistic loss function f(β) =

∑n
i=1(−yixTi β + log(1 + exp(xTi β))).

Here xi is ith row of matrix X.

In Figure 19.3, we have an experimental result of fused lasso with a regressor matrix problem. The goal in
this experiment is to predict whether a patient has Alzheimer’s disease or not given MRI brain images of
the patient. We have pictures of the models of MRI brain images that are used to make predictions. The
first column shows models trained using fused lasso penalty that encourages voxels to have constant values
that are adjacent to each other. The second and third columns are the models of the simple lasso penalty
that encourages learning sparse set of voxels but not necessarily forcing voxels to have spatial property. The
first row shows best models that show the voxels predictive of the Alzheimer’s disease, and the second row
shows features that are most predictive of the Alzheimer’s disease. We observe that the colored region in
the second row corresponds to the hippocampus region, which is known to be relevant to Alzheimer.

19.5 Algorithms for the fused lasso

Now let’s learn how to solve the following fused lasso problem.

min
β

f(β) + λ‖Dβ‖1. (19.4)

Let’s examine several different methods to solve this problem.

19-4 Lecture 19: November 5

Figure 19.3: Fused lasso with a regressor matrix - brain imaging example.

19.5.1 Subgradient method

The subgradient of the equation 19.4 is

g = ∇f(β) + λDT γ (19.5)

where γi ∈ ∂‖x‖1 is evaluated at x = Dβ

γi ∈

{
{sign((Dβ)i)} if (Dβ)i 6= 0

[−1, 1] if (Dβ)i = 0
(19.6)

• Downside: convergence is slow.

• Upside: g is easy to compute, when we know ∇f . In this case, g = ∇f(β) + λ
∑
i∈S sign((Dβ)i) ·Di

where S = supp(Dβ); we ignore all nonzeros in β and sum up all active components.

19.5.2 Proximal gradient descent

We can compute the proximal operator as following.

proxt(β) = argminz
1

2t
‖β − z‖22 + λ‖Dz‖1 (19.7)

Here, we see that the solving proximal operator is a fused lasso signal approximation problem with a Gaussian
loss. This is not easy since we have D in the L1 norm penalty unlike the soft-thresholding case where D = I.

We can reparameterize L1 norm ‖Dβ‖1 to linear inequality constraints by introducing a new set of variables
corresponding to the absolute value of the components. Then we can use interior point method solve the
problem. But in this approach, we have twice as many variables as the original problem.

It is better to consider formulating this problem into dual problem to solve it, where we will explain in the
following section.

Lecture 19: November 5 19-5

19.6 Fused lasso dual probelm

Our original primal problem is

min
β

f(β) + λ‖Dβ‖1.
(19.8)

By introducing a new variable z,

min
β,z

f(β) + λ‖z‖1.

subject to z = Dβ
(19.9)

The Lagrangian is given as L(β, z, u) = f(β)+λ‖z‖1 +uT (Dβ−z), so the Lagrangian dual function becomes

min
β,z

f(β) + λ‖z‖1 + uT (Dβ − z)

= min
β

[f(β) + uT (Dβ)] + min
z

[‖z‖1 − uT z]

= −f∗(−DTu)− I(‖z‖∞ ≤ λ)

(19.10)

Thus, we have dual problem,

min
u

f∗(−DTu)

subject to ‖u‖∞ ≤ λ (19.11)

Here f∗ is the conjugate function of f , u ∈ Rm, β ∈ Rn where m is the number of rows in D.

By KKT conditions, we see that the primal and dual solutions β̂, û are linked:

∇f(β̂) +DT û = 0 (19.12)

ûi =

{λ} if (Dβ̂)i > 0

{−λ} if (Dβ̂)i < 0, i = 1, . . . ,m

[−λ, λ] if (Dβ̂)i = 0

(19.13)

From the second property, we see that the sparsity pattern in the primal and dual variales are reversed: if
ui is at the boundary of (−λ, λ), then β̂ is inside of L1 norm (nonzero), and if β̂ = 0 then ûi is inside the
(−λ, λ) (nonzero).

When we compare primal (equation 19.8) and dual problem (equation 19.11), we see that we have moved D
from non-smooth term to the smooth term of the objective, which makes it easier for the proximal operator.

Let’s consider two methods to solve this dual problem of equation 19.11: proximal gradient descent, and
interior point method.

19.6.1 Dual proximal gradient descent

From dual problem, we have proximal operator,

min
u

proxt(u) = argminz
1

2t
‖u− z‖22

subject to ‖z‖∞ ≤ λ
(19.14)

19-6 Lecture 19: November 5

This is much easier to solve compared to the proximal operator of the original primal problem (equation
19.7). The solution is given by simply projecting the variable onto a m dimensional box [−λ, λ]m:

∇f(β̂) +DT û = 0 (19.15)

ẑi =

λ if ui > λ

−λ if ui < λ, i = 1, . . . ,m

ui if ui ∈ [−λ, λ]

(19.16)

19.6.2 Dual interior point method

Let’s rewrite the dual problem as

min
u

f∗(−DTu)

subject to − λ ≤ ui ≤ λ, i = 1, . . . ,m
(19.17)

In the interior point method, we substitute inequality constraints with log barrier function, so we have
problem

min
u

t · f∗(−DTu) + φ(u) (19.18)

where the log barrier function is φ(u) = −
∑m
i=1(log(λ − ui) + log(ui + λ)). Given above problem, we can

solve it using Newton’s method.

Now let’s think of the efficiency of the Newton updates. We do the Newton updates with respect to direction
H−1g where the gradient and Hessian of the dual criterion function F (u) = tf∗(−DTu) + φ(u) is given as
below.

g = ∇F (u) = −t ·D(∇f∗(−DTu)) +∇φ(u) (19.19)

H = ∇2F (u) = t ·D(∇2f∗(−DTu))DT +∇2φ(u) (19.20)

From H, by inspection, we see that the second term (Hessian of log barrier, ∇2φ(u)) is simple diagonal
matrix. Therefore, the first term (f∗ and D) determines the overall difficulty of computing Newton updates.
(If Hessian of loss term ∇2f∗(v) and D are structured then often D∇2f∗(v)DT is also structured, making
it easy to solve Newton steps.)

19.7 Summary of the methods for solving fused lasso problem

• Primal subgradient method: cheap iterations, but slow convergence.

• Primal proximal graident: expensive iterations (evaluation of proximal operator), medium convergence.

• Dual proximal gradient: very cheap iterations, medium convergence.

• Dual iterior point method: may or may not be expensive iteration depending on f∗, D, rapid conver-
gence.

Lecture 19: November 5 19-7

19.8 Case study: fused lasso, Gaussian or logistic signal approxi-
mation

19.8.1 Problem formulation

Let’s consider a fused lasso problem over a general graph, where we want to solve for D. The primal problems
with Gaussian or logistic loss are given as followings.

min
β

1

2

n∑
i=1

(yi − βi)2 + λ‖Dβ‖1

min
β

n∑
i=1

(−yiβi + log(1 + eβi)) + λ‖Dβ‖1

(19.21)

If we want to get a solution of high accuracy, which method should we use? Primal methods (Primal subgra-
dient and primal proximal gradient) are not good choices since they are slow and intractable, respectively.
Let’s formulate the dual problem, and inspect which of the dual methods (dual proximal gradient method
or dual interior-point method) is desirable.

19.8.2 Dual formulation

The conjugate functions f∗ for Gaussian and logistic loss are given as following.

f∗(v) =
1

2

n∑
i=1

y2i −
1

2

n∑
i=1

(yi + vi)
2 (Gaussian loss case) (19.22)

f∗(v) =

n∑
i=1

((vi + yi) log(vi + yi) + (1− vi − yi) log(1− vi − yi)) (logistic loss case) (19.23)

From dual solutions, we can recover primal solutions as following.

β̂ = y −DT û (Gaussian loss case) (19.24)

β̂i = yi log(yi(D
T û)i) + yi log(1− yi(DT û)i), i = 1, . . . , n (logistic loss case) (19.25)

Given this dual formulation, let’s think of solving this dual problem by proximal gradient descent method
ad interior-point method.

19.8.3 Dual proximal gradient method

• Cheap iterations: projection of u+ tD∇f∗(−DTu) on to a box repeatedly.

• Slow convergence: as shown in Figure 19.4, as we have more number of nodes in graph, the condition
number in D increases, which means more iterations are required for proximal to converge.

19-8 Lecture 19: November 5

Figure 19.4: Condition numbers for a 2d gird graph

(a) (b)

Figure 19.5: (a) Dual interior point method (10 iterations) (b) Dual proximal gradient method (1000 itera-
tions)

19.8.4 Dual interior-point method

In dual interior-point method, we need to solve for Newton updates, which requires computation of gradient
and Hessian. The Hessians of the dual problem with Gaussian loss and logistic loss are given as follows.

∇2f∗(v) = I (Gaussian loss case) (19.26)

∇2f∗(v) = diag(
1

vi + yi
+

1

1− vi − yi
, i = 1, . . . ,m) (logistic loss case) (19.27)

From this we see that Newton steps involves solving a linear system Hx = g in H = DA(u)DT +B(u). Here
A(u), B(u) are structured matrices (diagonal matrices). This makes the problem to be solved efficiently with
O(n) flops.

As a conclusion, to solve a fused lasso problem with high accuracy, dual interior-point method is desirable:
cheap iterations and fast convergence to high accuracy. In Figure 19.5, we have solution for the image
approximation problem using (a) dual interior-point method with 10 iterations and (b) dual proximal gradient
method with 1000 iterations. We see that solution of the dual interior-point method is more accurate even
with smaller number of iterations compared to that of dual proximal gradient method.

Lecture 19: November 5 19-9

19.9 Case study: fused lasso, linear or logistic regression

In this section, let’s think about fused lasso problem with regressor matrix X ∈ Rn×p with losses f(β) =
1
2

∑n
i=1(yi−xTi β)2 or f(β) =

∑n
i=1(−yixTi β+log(1+exp(xTi β)). If we denote the loss function f(β) = h(Xβ)

for simplicity, we have problem in primal and dual formulation as below.

Primal: min
β

h(Xβ) + λ‖Dβ‖1 (19.28)

Dual: min
β

h∗(v)

subject to XT v +DTu = 0, ‖u‖∞ ≤ λ
(19.29)

where u ∈ Rm, v ∈ Rp are dual variables.

The primal and dual solutions β̂, û, v̂ must satisfy below conditions.

∇h(Xβ̂)− v̂ = 0 or equivalently XT∇h(Xβ̂) +DT û = 0 (19.30)

Computing primal variable β̂ from dual variable û requires solving a linear system in X, and this is very
expensive.

How should we solve this problem? Let’s consider the four methods again.

• Dual proximal gradient descent: intractable. (Proximal operator is proxt(u, v) = argminXTw+DT z=0
1
2t‖u−

z‖22 + 1
2t‖v − w‖

2
2 + ‖u‖∞. This is finding projection of (u, v) into the intersection of a plane and a

lower-dimensional box.)

• Dual interior point method: not favorable. (We have equality constraint XT v = DTu = 0. Previously,
the Hessian had nice sparse structure, but now we have dense X matrix in Hessian, so we cannot derive
dual interior-point method with O(n) flops.)

• Primal subgradient method: slow.

• Primal proximal gradient descent: best option. (The gradient ∇f(β) = XT∇h(Xβ) can be computed
easily by chain rule, and the proximal operator proxt(β) = argminz

1
2t‖β − z‖

2
2 = λ‖Dz‖1 is exactly

the problem of graph fused lasso with Gaussian loss without regressors. This prox operator can be
evaluated by fast dual interior point method. Previously, we ruled out this method because the difficulty
of solving the prox operator seemed equivalent to that of the original problem. However in this case
with regressor, it is a good tradeoff between the difficulty of solving prox operator and being freed
from solving linear system involving dense regressor X since prox operator does not involve regressor
matrix)

19.10 Case study: 1d fused lasso, linear or logistic regression

Let’s think about general case of fused lasso where it is applied to general chain graph with D given as 19.3.

The prox operator is

proxt(β) = argminz
1

2t
‖β − z‖22 + λ

n∑
i=1

|zi − zi+1| (19.31)

This can be computed by dyanmic programming or taut-string methods in O(n) operations. In Figure 19.6,
comparison on time consumption for solving the problem via dynamic programming versus baded matrix is
plotted. We see that evaluating prox operation using dynamic programming is really fast.

19-10 Lecture 19: November 5

Figure 19.6: Dynamic programming vs. banded matrix solve

19.11 Case study: 1d fused lasso, Gaussian or logistic signal ap-
proximation

Let’s compare primal proximal gradient and dual interior point method for 1d fused lasso problem, where
both of them seem strong choices.

We have primal and dual problem as follows.

Primal: min
β
f(β) + λ‖Dβ‖1 (19.32)

Dual: min
u
f∗(−DTu) subject to ‖u‖∞ ≤ λ (19.33)

Then which algorithm should we use?

• Large λ: primal algorithm. (many of (Dβ̂)i = 0 in primal, many of ûi ∈ (−λ, λ) in dual; fewer effective
parameters in primal optimization)

• Small λ: dual algorithm. (many of (Dβ̂)i 6= 0 in primal, many of |ûi| = λ in dual; fewer effective
parameters in dual optimization)

