
Homework 3

Convex Optimization 10-725/36-725

Due Friday October 14 at 5:30pm
submitted to Christoph Dann in Gates 8013
(Remember to a submit separate writeup for each

problem, with your name at the top)

Total: 75 points
v1.1

1 Duality in Linear Programs (17 pts) [Mariya]

(a, 3pts) Derive the dual of

min
x1,x2

−4x1 + 2x2

subject to − x1 + x2 ≥ 2

x1 − x2 ≥ 1

x1, x2 ≥ 0

What are the primal optimal value and the dual optimal value? What is the duality gap?

(b, 14pts) Both Ryan and the TAs want many students to attend their office hours. However, the
TAs have noticed that students are less likely to go to their office hours if they attend
Ryan‘s, so the TAs decide to sabotage Ryan’s office hours. The TAs will block the paths
between class in Wean and Ryan’s office in Baker.

In this problem, we think of the CMU campus as a directed graph G = (V,E,C).
Here, vertices vi, vj ∈ V correspond to the ith and jth landmark, e.g. the Wean café and
the 1st floor of Porter, the directed edge (i, j) ∈ E is the directed path from vi to vj , and
the capacity cij ∈ C is the maximum number of convex optimization students that can
pass through (i, j). Students start from vs, our classroom in Wean, and move along the
directed edges towards vt, Ryan’s office. We assume there are no edges that end in vs or
originate in vt.

The TAs decide to block paths by building barricades. However, they want to do as
little physical labor as possible, so they only want to block the tightest path (i.e. smallest
total capacity) in a way that still prevents every student from reaching Ryan’s office.

In other words, the TAs want to find a partition, or cut, C = (S, T ) of V , such that
vs ∈ S and vt ∈ T and it has minimum capacity. The capacity of a cut is defined as:

c(S, T ) =
∑

(i,j)∈E

bijcij

where bij = 1 if vi ∈ S and vj ∈ T , and bij = 0 otherwise.
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The TA’s min cut problem can be formulated as follows:

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to xs = 1, xt = 0

bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all (i, j) ∈ E

(1)

( i. 1pt) Explain what the variables xi and xj for all (i, j) ∈ E mean and why the introduction
of these variables is necessary (hint: what would happen if the xi, xj variables weren‘t
introduced?).

( ii. 1pt) The problem in (1) is an integer linear program (ILP), because its variables take
integer values. Because ILPs are mostly difficult to solve, they are often relaxed to
LPs. Consider the following relaxation of the integer constraints in (1):

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj for all (i, j) ∈ E
b ≥ 0

xs − xt ≥ 1

(2)

How does the optimal value of the original ILP, f?ILP , compare to the optimal value
of the relaxed LP, f?LP ?

( iii. 6pts) Next, derive the dual of (2). Use the following dual variables f ∈ R|E|, y ∈ R|E|, w ∈ R
corresponding to the constraints in the order they appear in (2).

( iv. 2pts) What does each constraint of the dual you derived in (iii.) mean in the setting of
our path-blocking problem? Hint: the dual of the relaxed min-cut problem is called
max-flow.

(v. 1pt) Finally, how does the optimal value of the relaxed LP, f?LP , compare to the optimal
value of the dual, f?dual?

(vi. 1pt) Interestingly, a well-known theorem (the max-flow min-cut theorem) tells us is that
the original ILP and the max flow problem have equal optimal criterion values. What
does this result imply about the tightness of the convex relaxation of the ILP?

(vii. 2pts) Consider the setting of our path-blocking problem in Figure 1. The capacities of all
edges are shown in the figure, and the min cut has been drawn. Which paths will the
TAs barricade? What is the value of the max flow in this problem?

2 Practice with KKT conditions and duality (17 points) [Justin]

(a) Take the LP:
minx cTx such that Ax = b and x ≥ 0 (3)

(where the inequality is defined element-wise) and now consider the second, similar optimiza-
tion problem

minx cTx− τ
∑
i

log(xi) such that Ax = b (4)

The second term in the objective is sometimes called the log barrier function, and acts as a
‘soft’ inequality constraint, because it will tend to positive infinity as any of the xi tend to
zero from the right.
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Figure 1: Min cut of the path-blocking problem

(i, 2pts) Derive the dual of the original LP.

(ii, 2pts) Then derive the KKT of original LP in (3).

(iii, 2pts) Then derive the KKT of the second problem with the log barrier problem in (4).

(iv, 2pts) Describe the differences in the two KKT conditions. (Hint: what can you observe about
the second set of KKT conditions when τ is taken to be large?)

Throughout, assume that {x : x > 0, Ax = b} and {y : AT y > −c} are non-empty. i.e. the
primal LP and its dual are both strictly feasible.

(b, 9 pts) Take the least squares regression problem (for X ∈ Rn×p and y ∈ Rn):

minβ∈Rp (‖y −Xβ‖2)
2

(5)

Prove that an equivalent dual of this problem is

minv∈Rn‖y − v‖22 subject to XT v = 0 (6)

(Hint: in deriving the dual, you may start by introducing the auxiliary variable z = Xβ.) What
is the relationship between the primal and the dual solutions, implied by the KKT conditions?
Explain why this relationship makes sense, given what you know about projections onto linear
subspaces.

3 Convex conjugate andMoreau decomposition (18 pts) [Han]

The convex conjugate of a function h : Rn 7→ R is defined as follows:

h∗(x) = sup
y∈dom(h)

xT y − h(y)
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Also recall that the proximal operator for function h(·) with t > 0 is defined as:

proxth(x) = argmin
z

1

2
||z − x||22 + th(z)

(a, 3 pts) Show that (th)∗(x) = th∗(x/t).

(b, 4 pts) Let f : Rn 7→ R be a closed and convex function. Show that y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y). (Hint:
Recall that for closed and convex function f , we have f∗∗ = f).

(c, 4 pts) Show that
x = proxth(x) + tprox 1

t h
∗(x/t)

This is known as the Moreau decomposition. (Hint: Feel free to use the results from (a) and (b)
to prove this theorem. The subgradient optimality condition may be useful here.)

(d, 3 pts) Let h(y) = ||y|| be a norm of y. Prove that its conjugate is h∗(x) = I{z:||z||∗≤1}(x).

(e, 4 pts) Let h(z) = ||z||∞, where ||z||∞ is defined as ||z||∞ = maxi=1,...,n |zi|. Compute the proximal
operator proxth(x) of h(z) = ||z||∞. Note that for this question you do not need to give an
analytic solution for the prox operator. As long as you believe each part of your answer to be
directly computable by a known algorithm, this is fine. (Hint: You may find the results from
(c) and (d) helpful.)

4 Support vector machines and duality (23 points) [Christoph
& Alnur]

In binary classification, we are, roughly speaking, interested in finding a hyperplane that separates
two clouds of points living in, say, Rp. The support vector machine (SVM), which we covered a little
in class, is a pretty popular method for doing binary classification; to this day, it’s (still) used in a
number of fields outside of just machine learning and statistics.

One issue with the standard SVM, though, is that it doesn’t work well in situations where we
pay a higher “price” for misclassifications of one of the two point-clouds. For example, a bank will
probably want to be quite certain that a customer won’t default on their loan before deciding to give
them one (here, the “price” that we pay is monetary). In this problem, you will develop a variant
of the standard SVM that addresses these issues, called the cost-sensitive SVM. You will implement
your own cost-sensitive SVM solver (in part (b) of this question), but as a starting point, we will
first investigate the cost-sensitive SVM dual problem (in part (a) of this question).

Throughout, we assume that we are given n data samples, each one taking the form (xi, yi),
where xi ∈ Rp is a feature vector and yi ∈ {−1,+1} is a class. In order to make our notation more
concise, we can transpose and stack the xi vertically, collecting these feature vectors into the matrix
X ∈ Rn×p; doing the same thing with the yi lets us write y ∈ {−1,+1}n. It will also be useful for
us to define the following sets, containing the indices of the positive (i.e., those with yi = +1) and
negative (i.e., those with yi = −1) samples, respectively:

S1 = {i ∈ {1, . . . , n} : yi = +1}, S2 = {i ∈ {1, . . . , n} : yi = −1}.

Part (a)

One simple way to incorporate misclassification costs into the standard SVM formulation, is to pose
the following (primal) cost-sensitive SVM optimization problem:

minimize
β∈Rp, β0∈R, ξ∈Rn

(1/2)‖β‖22 + C1

∑
i∈S1 ξi + C2

∑
i∈S2 ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n,

(7)
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where β ∈ Rp, β0 ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn are our variables, and C1, C2 are positive costs, chosen
by the implementer. (Just to remind you of some of the intuition here: when C1 = C2, problem
(7) can be viewed as another way of writing a squared `2-norm penalized hinge loss minimization
problem.)

(i, 2pts) Does strong duality hold for problem (7)? Why or why not? (Your answer to the latter
question should be short.)

(ii, 3pts) Derive the Karush-Kuhn-Tucker (KKT) conditions for problem (7). Please use α ∈ Rn for
the dual variables (i.e., Lagrange multipliers) associated with the constraints “yi(x

T
i β+ β0) ≥

1 − ξi, i = 1, . . . , n”, and µ ∈ Rn for the dual variables associated with the constraints
“ξi ≥ 0, i = 1, . . . , n”.

(iii, 3pts) Show that the cost-sensitive SVM dual problem can be written as

maximize
α∈Rn

−(1/2)αX̃X̃Tα+ 1Tα

subject to yTα = 0, 0 ≤ αS1 ≤ C11, 0 ≤ αS2 ≤ C21,
(8)

where X̃ ∈ Rn×p = diag(y)X, αS means selecting only the indices of α that are in the set S,
and the 1’s here are vectors (of the appropriate and possibly different sizes) containing only
ones.

(iv, 2pts) Give an expression for the optimal β in terms of the optimal α variables. Explain why, using
just a couple sentences, the optimal β can be thought of as “cost-sensitive”.

(v, 1pt) What kind of problem class are both (7) and (8)? You may choose none, one, or more than
one of the following:

• linear program

• quadratic program

• second-order cone program

• semidefinite program

• cone program

Part (b)

Please submit your code as an appendix to this problem.

(i, 4pts) Implement the primal SVM in problem (7) using a standard QP solver, typically available
as “quadprog“ function (for example in Matlab, R or in Mathprogbase.jl in Julia). Load a
small synthetic toy problem with inputs X ∈ R100×2 and labels y ∈ {−1, 1}100 from toy.hdf5

(HDF5 file format) and solve the primal SVM with (1) C1 = C2 = 1, (2) C1 = 1, C2 = 10 and
(3) C1 = 10, C2 = 1. For each pair of penalty parameters report the objective value of the
optimal solution.

(ii, 2pts) For each parameter pair, show a scatter plot of the data and plot the decision border (where
the predicted class label changes) as well as the boundaries of the margin (the area in which
there is a nonzero penalty for predicting any label) on top. Also highlight the data points i
that lie on the wrong side of the margin, that is, points with ξi > 0. How and why does the
decision boundary change with different penalty parameters?
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(iii, 2pts) Looking back at the KKT conditions derived in part (a, ii) and the form of the primal solution
in part (a, iv), what can be said about the influence of the data points that lie strictly on the
right side of the margin (points i with yi(x

>
i β + β0) > 1)? How would the decision boundary

change if we removed these data points from the dataset and recomputed the optimal solution?
(Give a qualitative answer, no need to actually implement that)

(iv, 3pts) Implement now the dual SVM in problem (8) using again a standard QP solver and report
the optimal objective value of the dual for the same penalty parameters as in (i). What can
in general be said about the location of a data point i ∈ Sk with respect of the boundary of
the margin if

• αi = 0;

• αi ∈ (0, Ck);

• αi = Ck?

For each pair of penalty parameters, plot the signed distance to the decision boundary of each
datapoint i obtained from the primal SVM yi(x

>
i β + β0) against dual variables αi obtained

from the dual SVM.

(v, 1pt) Cost-sensitive SVMs minimize the (regularized) cost-sensitive hinge-loss, a convex upper bound
on the weighted classification error. Predict the class labels for each data point (of the same set
that the SVM was trained on) and report the total weighted classification error. A datapoint
incurs a loss of C1 if the true label is +1 and −1 is predicted and C2 if +1 is predicted for a
data point with true label −1.
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