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Last time: dual methods

Consider the problem

min
x

f(x) subject to Ax = b

where f is strictly convex and closed. Denote Lagrangian

L(x, u) = f(x) + uT (Ax− b)

Dual gradient ascent repeats, for k = 1, 2, 3, . . .

x(k) = argmin
x

L(x, u(k−1))

u(k) = u(k−1) + tk(Ax
(k) − b)

Good: x update decomposes when f does. Bad: require stringent
assumptions (strong convexity of f) to ensure convergence
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Augmented Lagrangian method (also called method of multipliers)
considers the modified problem, for a parameter ρ > 0,

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

uses modified Lagrangian

Lρ(x, u) = f(x) + uT (Ax− b) +
ρ

2
‖Ax− b‖22

and repeats, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, u
(k−1))

u(k) = u(k−1) + ρ(Ax(k) − b)

Good: better convergence properties. Bad: lose decomposability
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Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: combines
the best of both methods. Consider a problem of the form:

min
x,z

f(x) + g(z) subject to Ax+Bz = c

We define augmented Lagrangian, for a parameter ρ > 0,

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

We repeat, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)
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Convergence guarantees

Under modest assumptions on f, g (these do not require A,B to
be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = Ax(k) −Bz(k) − c→ 0 as
k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where
f? + g? is the optimal primal objective value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: not known in general, theory is currently being
developed, e.g., in Hong and Luo (2012), Deng and Yin (2012),
Iutzeler et al. (2014), Nishihara et al. (2015). Roughly, it behaves
like a first-order method (or a bit faster)
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ADMM in scaled form

It is often easier to express the ADMM algorithm in a scaled form,
where we replace the dual variable u by a scaled variable w = u/ρ.
In this parametrization, the ADMM steps are:

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that here the kth iterate w(k) is just given by a running sum
of residuals:

w(k) = w(0) +
k∑
i=1

(
Ax(i) +Bz(i) − c

)
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Outline

Today:

• Examples, practicalities

• Consensus ADMM

• Faster convergence?
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Connection to proximal operators

Consider

min
x

f(x) + g(x) ⇐⇒ min
x,z

f(x) + g(z) subject to x = z

ADMM steps (equivalent to Douglas-Rachford, here):

x(k) = proxf,1/ρ(z
(k−1) − w(k−1))

z(k) = proxg,1/ρ(x
(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

where proxf,1/ρ is the proximal operator for f at parameter 1/ρ,
and similarly for proxg,1/ρ

In general, the update for block of variables reduces to prox update
whenever the corresponding linear transformation is the identity
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Example: lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

We can rewrite this as:

min
β,α

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to β − α = 0

ADMM gives us a simple algorithm:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(β

(k) + w(k−1))

w(k) = w(k−1) + β(k) − α(k)
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Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the soft-thresolding operator St, which
recall is defined as

[St(x)]j =


xj − t x > t

0 −t ≤ x ≤ t
xj + t x < −t

, j = 1, . . . p

• ADMM steps are “almost” like repeated soft-thresholding of
ridge regression coefficients
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Comparison of various algorithms for lasso regression: 50 instances
with n = 100, p = 20
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Practicalities

In practice, ADMM usually obtains a relatively accurate solution in
a handful of iterations, but it requires a large number of iterations
for a highly accurate solution (generally behaves like a first-order
method)

Choice of ρ can greatly influence practical convergence of ADMM:

• ρ too large → not enough emphasis on minimizing f + g

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ; can be useful, but
does not have convergence guarantees

Like deriving duals, transforming a problem into one that ADMM
can handle is sometimes a bit subtle, since different forms can lead
to different algorithms
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Example: group lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the group lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖β(g)‖2

Rewrite as

min
β,α

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖α(g)‖2 subject to β − α = 0

ADMM steps are:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α

(k)
(g) = Rcgλ/ρ

(
β

(k)
(g) + w

(k−1)
(g)

)
, g = 1, . . . G

w(k) = w(k−1) + β(k) − α(k)
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Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the group soft-thresolding operator Rt,
which recall is defined as

Rt(x) =

(
1− t

‖x‖2

)
+

x

• Similar ADMM steps follow for a sum of arbitrary norms of as
regularizer, provided we know prox operator of each norm

• ADMM algorithm can be rederived when groups have overlap
(hard problem to optimize in general!). See Boyd et al. (2010)
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Example: sparse subspace estimation

Given S ∈ Sp (typically S � 0 is a covariance matrix), consider the
sparse subspace estimation problem (Vu et al., 2013):

max
Y

tr(SY )− λ‖Y ‖1 subject to Y ∈ Fk

where Fk is the Fantope of order k, namely

Fk = {Y ∈ Sp : 0 � Y � I, tr(Y ) = k}

Note that when λ = 0, the above problem is equivalent to ordinary
principal component analysis (PCA)

This above is an SDP and in principle solveable with interior point
methods, though these can be complicated to implement and quite
slow for large problem sizes
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We rewrite the problem as:

min
Y,Z
−tr(SY ) + IFk

(Y ) + λ‖Z‖1 subject to Y = Z

ADMM steps are:

Y (k) = PFk
(Z(k−1) −W (k−1) + S/ρ)

Z(k) = Sλ/ρ(Y
(k) +W (k−1))

W (k) = W (k−1) + Y (k) − Z(k)

Here PFk
is Fantope projection operator, computed by clipping the

eigendecomposition A = UΣUT , Σ = diag(σ1, . . . , σp):

PFk
(A) = UΣθU

T , Σθ = diag(σ1(θ), . . . , σp(θ))

where each σi(θ) = min{max{σi − θ, 0}, 1}, and
∑p

i=1 σi(θ) = k
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Example: sparse plus low rank decomposition

Given M ∈ Rn×m, consider the sparse plus low rank decomposition
problem (Candes et al., 2009):

min
L,S

‖L‖tr + λ‖S‖1

subject to L+ S = M

ADMM steps:

L(k) = Str
1/ρ(M − S(k−1) +W (k−1))

S(k) = S`1λ/ρ(M − L
(k) +W (k−1))

W (k) = W (k−1) +M − L(k) − S(k)

where, to distinguish them, we use Str
λ/ρ for matrix soft-thresolding

and S`1λ/ρ for elementwise soft-thresolding
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Example from Candes et al. (2009):

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n1.

13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n1).

25
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Consensus ADMM

Consider a problem of the form: min
x

B∑
i=1

fi(x)

The consensus ADMM approach begins by reparametrizing:

min
x1,...xB ,x

B∑
i=1

fi(xi) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM steps:

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

x(k) =
1

B

B∑
i=1

(
x

(k)
i + w

(k−1)
i

)
w

(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . B
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Write x̄ = 1
B

∑B
i=1 xi and similarly for other variables. Not hard to

see that w̄(k) = 0 for all iterations k ≥ 1

Hence ADMM steps can be simplified, by taking x(k) = x̄(k):

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x̄(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

w
(k)
i = w

(k−1)
i + x

(k)
i − x̄(k), i = 1, . . . B

To reiterate, the xi, i = 1, . . . B updates here are done in parallel

Intuition:

• Try to minimize each fi(xi), use (squared) `2 regularization to
pull each xi towards the average x̄

• If a variable xi is bigger than the average, then wi is increased

• So the regularization in the next step pulls xi even closer
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General consensus ADMM with regularization

Consider a problem of the form: min
x

B∑
i=1

fi(a
T
i x+ bi) + g(x)

For consensus ADMM, we again reparametrize:

min
x1,...xB ,x

B∑
i=1

fi(a
T
i xi + bi) + g(x) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM updates:

x
(k)
i = argmin

xi
fi(a

T
i xi + bi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22,

i = 1, . . . B

x(k) = argmin
x

Bρ

2
‖x− x̄(k) − w̄(k−1)‖22 + g(x)

w
(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . B
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Notes:

• It is no longer true that w̄(k) = 0 at a general iteration k, so
ADMM steps do not simplify as before

• To reiterate, the xi, i = 1, . . . B updates are done in parallel

• Each xi update can be thought of as a loss minimization on
part of the data, with `2 regularization

• The x update is a proximal operation in regularizer g

• The w update drives the individual variables into consensus

• A different initial reparametrization will give rise to a different
ADMM algorithm

See Boyd et al. (2010), Parikh and Boyd (2013) for more details
on consensus ADMM, strategies for splitting up into subproblems,
and implementation tips
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Faster convergence?

ADMM can exhibit much faster convergence than usual, when we
parametrize subproblems in a “special way”

• ADMM updates relate closely to block coordinate descent, in
which we optimize a criterion in an alternating fashion across
blocks of variables

• With this in mind, get fastest convergence when minimizing
over blocks of variables leads to updates in nearly orthogonal
directions

• Suggests we should design ADMM form (auxiliary constraints)
so that primal updates de-correlate as best as possible

• This is done in, e.g., Ramdas and Tibshirani (2014), Wytock
et al. (2014), Barbero and Sra (2014)
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Example: 2d fused lasso

Given an image Y ∈ Rd×d, equivalently written as y ∈ Rn, recall
the 2d fused lasso or 2d total variation denoising problem:

min
Θ

1

2
‖Y −Θ‖2F + λ

∑
i,j

(
|Θi,j −Θi+1,j |+ |Θi,j −Θi,j+1|

)
⇐⇒ min

θ

1

2
‖y − θ‖22 + λ‖Dθ‖1

Here D ∈ Rm×n is a 2d difference operator giving the appropriate
differences (across horizontally and vertically adjacent positions)

164 Parallel and Distributed Algorithms

Figure 5.2: Variables are black dots; the partitions P and Q are in orange and cyan.

The next step is to transform (5.3) into the canonical form (5.1):

minimize ∑N
i=1 fi(xi) + IC(x1, . . . , xN ), (5.4)

where C is the consensus set

C = {(x1, . . . , xN ) | x1 = · · · = xN}. (5.5)

In this formulation we have moved the consensus constraint into the
objective using an indicator function. In the notation of (5.1), f is the
sum of the terms fi, while g is the indicator function of the consistency
constraint. The partitions are given by

P = {[n], n + [n], 2n + [n], . . . , (N − 1)n + [n]},
Q = {{i, n + i, 2n + i, . . . , (N − 1)n + i} | i = 1, . . . , N}.

The first partition is clear since f is additive. The consensus constraint
splits across its components; it can be written as a separate consensus
constraint for each component. Since the full optimization variable for
(5.4) is in RnN , it is easiest to view it as in Figure 5.2, in which case
it is easy to see that f is separable across columns while g is separable
across rows.

We now apply ADMM as above. Evaluating proxλg reduces to pro-
jecting onto the consensus set (5.5). This is simple: we replace each
zi with its average z = (1/N)∑N

i=1 zi. From this we conclude that∑N
i=1 u

k
i = 0, which allows for some simplifications of the general algo-
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First way to setup ADMM:

min
θ,z

1

2
‖y − θ‖22 + λ‖z‖1 subject to θ = Dz

Leads to ADMM steps:

θ(k) = (I + ρDTD)−1
(
y + ρDT (z(k−1) + w(k−1))

)
z(k) = Sλ/ρ(Dθ

(k) − w(k−1))

w(k) = w(k−1) + z(k−1) −Dθ(k)

Notes:

• The θ update solves linear system in I + ρL, with L = DTD
the graph Laplacian matrix of the 2d grid, so this can be done
efficiently, in roughly O(n) operations

• The z update applies soft thresholding operator St

• Hence one entire ADMM cycle uses roughly O(n) operations
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Second way to setup ADMM:

min
Θ,Z

1

2
‖Y −Θ‖2F + λ

∑
i,j

(
|Θi,j −Θi+1,j |+ |Zi,j − Zi,j+1|

)
subject to Θ = Z

Leads to ADMM steps:

Θ
(k)
·,j = FL1d

λ/(1+ρ)

(
Y + ρ(Z

(k−1)
·,j −W (k−1)

·,j )

1 + ρ

)
, j = 1, . . . , d

Z
(k)
i,· = FL1d

λ/ρ

(
Θ

(k)
i,· +W

(k−1)
i,·

)
, i = 1, . . . , d

W (k) = W (k−1) + Θ(k) − Z(k)

Notes:

• Both Θ, Z updates solve (sequence of) 1d fused lassos, where
we write FL1d

τ (a) = argminx
1
2‖a− x‖22 + τ

∑d−1
i=1 |xi − xi+1|
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• Critical: each 1d fused lasso solution can be computed exactly
in O(d) operations with specialized algorithms (e.g., Johnson,
2013; Davies and Kovac, 2001)

• Hence one entire ADMM cycle again uses O(n) operations164 Parallel and Distributed Algorithms

Figure 5.2: Variables are black dots; the partitions P and Q are in orange and cyan.

The next step is to transform (5.3) into the canonical form (5.1):

minimize ∑N
i=1 fi(xi) + IC(x1, . . . , xN ), (5.4)

where C is the consensus set

C = {(x1, . . . , xN ) | x1 = · · · = xN}. (5.5)

In this formulation we have moved the consensus constraint into the
objective using an indicator function. In the notation of (5.1), f is the
sum of the terms fi, while g is the indicator function of the consistency
constraint. The partitions are given by

P = {[n], n + [n], 2n + [n], . . . , (N − 1)n + [n]},
Q = {{i, n + i, 2n + i, . . . , (N − 1)n + i} | i = 1, . . . , N}.

The first partition is clear since f is additive. The consensus constraint
splits across its components; it can be written as a separate consensus
constraint for each component. Since the full optimization variable for
(5.4) is in RnN , it is easiest to view it as in Figure 5.2, in which case
it is easy to see that f is separable across columns while g is separable
across rows.

We now apply ADMM as above. Evaluating proxλg reduces to pro-
jecting onto the consensus set (5.5). This is simple: we replace each
zi with its average z = (1/N)∑N

i=1 zi. From this we conclude that∑N
i=1 u

k
i = 0, which allows for some simplifications of the general algo-
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Comparison of 2d fused lasso algorithms: an image of dimension
300× 200 (so n = 60, 000)
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Two ADMM algorithms, let’s call them standard and specialized
ADMM, convergence of criterions:
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ADMM iterates visualized after k = 10, 30, 50, 100 iterations:
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ADMM iterates visualized after k = 10, 30, 50, 100 iterations:
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ADMM iterates visualized after k = 10, 30, 50, 100 iterations:
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ADMM iterates visualized after k = 10, 30, 50, 100 iterations:
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