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Last time: Newton’s method
For root-finding

F (x) = 0 x+ = x− F ′(x)−1F (x)

For optimization

min
x

f(x) x+ = x−∇2f(x)−1∇f(x)

Assume f strongly convex, and both ∇f,∇2f are Lipschitz.
If x(0) near x? then

x(k) → x? and f(x(k))→ f?

quadratically.

For global convergence use damped Newton’s method:

x+ = x− t∇2f(x)−1∇f(x)
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Newton’s method for linearly-constrained optimization

For
min
x

f(x) subject to Ax = b

Newton’s method
x+ = x+ tv

where [
∇2f(x) AT

A 0

] [
v
w

]
= −

[
∇f(x)
Ax− b

]
.

The latter is precisely the root-finding Newton step for the KKT
conditions of the above equality-constrained problem, namely[

∇f(x) +ATy
Ax− b

]
=

[
0
0

]
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Barrier method
Consider the convex optimization problem

min
x

f(x)

subject to Ax = b
hi(x) ≤ 0, i = 1, . . .m.

Major challenge: figure out binding/non-binding constraints.
This complication occurs at the boundary of the feasible region.

Letting C := {x : hi(x) ≤ 0, i = 1, . . .m}, we can rewrite the
above problem as

min
x

f(x) + IC(x)

Ax = b.

Main idea of interior-point methods: approximate IC with a barrier
function for C to avoid the boundary of C and to make the
problem amenable to Newton’s method.
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Log barrier function

Assume h1, . . . hm : Rn → R are convex and twice differentiable.

The function

φ(x) = −
m∑
i=1

log(−hi(x))

is called the logarithmic barrier function for the set

{x : hi(x) < 0, i = 1, . . .m},

which we assume is nonempty.

Approximate original problem with

min
x

f(x) + 1
tφ(x)

Ax = b
⇔

min
x

tf(x) + φ(x)

Ax = b

where t > 0.
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Outline

Today:

• Central path

• Properties and interpretations

• Barrier method

• Convergence analysis

• Feasibility methods
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Log barrier calculus

For the log barrier function

φ(x) = −
m∑
i=1

log(−hi(x))

we have

∇φ(x) = −
m∑
i=1

1

hi(x)
∇hi(x)

and

∇2φ(x) =

m∑
i=1

1

hi(x)2
∇hi(x)∇hi(x)T −

m∑
i=1

1

hi(x)
∇2hi(x)
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Central path

Given t > 0, consider the barrier problem defined above

min
x

tf(x) + φ(x)

subject to Ax = b.

Let x?(t) denote the solution to this above barrier problem. The
central path is the set {x?(t) : t > 0}.

Under suitable conditions, this set is a smooth path in Rn and as
t→∞, we have x?(t)→ x?, where x? is a solution to our original
problem.
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Perturbed KKT conditions

KKT conditions for barrier problem:

t∇f(x?(t))−
m∑
i=1

1

hi(x?(t))
∇hi(x?(t)) +ATw = 0

Ax?(t) = b, hi(x
?(t)) < 0, i = 1, . . .m

KKT conditions of the original problem:

∇f(x?) +
m∑
i=1

u?i∇hi(x?) +ATv? = 0

Ax? = b, hi(x
?) ≤ 0, u?i ≥ 0, i = 1, . . .m

hi(x
?) · u?i = 0, i = 1, . . . ,m
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Duality gap

By convexity we have

f(x?(t))− f(x?) ≤ ∇f(x?(t))T(x?(t)− x?)

and

hi(x
?(t))− hi(x?) ≤ ∇hi(x?(t))T(x?(t)− x?), i = 1, . . . ,m.

Thus the previous two sets of KKT conditions yield

f(x?(t))− f? ≤ m

t
.

This is a useful stopping criterion.
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Barrier method v.0

For ε > 0 pick t = m/ε and solve

min
x

tf(x) + φ(x)

subject to Ax = b

to get f(x?(t))− f? ≤ ε.

This is not a good idea because the barrier problem is too difficult
to solve.

The above approach aims to find a point near the end of the
central path.

A better approach is to generate points along the central path.
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Barrier method v.1
Solve a sequence of barrier problems

min
x

tf(x) + φ(x)

subject to Ax = b

for increasing values of t.

• Pick t(0) > 0 and let k := 0

• Solve the barrier problem for t = t(0) to produce x(0) = x?(t)

• While m/t > ε
I Pick t(k+1) > t(k)

I Solve the barrier problem at t = t(k+1), using Newton’s
method initialized at x(k), to produce x(k+1) = x?(t)

end while

Common update t(k+1) = µt(k) for µ > 1.

Centering step: the step that solves the barrier problem.
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Considerations:

• Choice of µ: if µ is too small, then many outer iterations
might be needed; if µ is too big, then Newton’s method (each
centering step) might take many iterations to converge.

• Choice of t(0): if t(0) is too small, then many outer iterations
might be needed; if t(0) is too big, then the first Newton’s
solve (first centering step) might require many iterations to
compute x(0).

Fortunately, the performance of the barrier method is often quite
robust to the choice of µ and t(0) in practice.

The appropriate range for these parameters is scale dependent.
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Example of a small LP in n = 50 dimensions, m = 100 inequality
constraints (from B & V page 571):572 11 Interior-point methods

Newton iterations
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Convergence analysis

Assume that we solve the centering steps exactly. The following
result is immediate

Theorem: The barrier method after k centering steps satisfies

f(x(k))− f? ≤ m

µkt(0)

In other words, to reach a desired accuracy level of ε, we require

log(m/(t(0)ε))

logµ
+ 1

centering steps with the barrier method (plus initial centering step).
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Barrier method v.2

The previous algorithm generates points that are exactly on the
central path. However, the central path is only a “means to an
end”. There is no need to solve each problem exactly.

• Pick t(0) > 0 and let k := 0.

• Solve the barrier problem for t = t(0) to produce x(0) ≈ x?(t)
• While m/t > ε

I Pick t(k+1) > t(k)

I Solve the barrier problem at t = t(k+1), using Newton’s
method initialized at x(k), to produce x(k) ≈ x?(t)

Important issues (can be formalized):

• How close should each approximation be?

• How many Newton steps suffice at each centering step?
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Example of barrier method progress for an LP with m constraints
(from B & V page 575):
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

Can see roughly linear convergence in each case, and logarithmic
scaling with m
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Seen differently, the number of Newton steps needed (to decrease
initial duality gap by factor of 104) grows very slowly with m:

576 11 Interior-point methods

Newton iterations
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

Note that the cost of a single Newton step does depends on the
size of the problem.
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Feasibility methods

We have implicitly assumed that we have a strictly feasible point
for the first centering step, i.e., for computing x(0) = x?, solution
of barrier problem at t = t(0).

This is a point x such that

hi(x) < 0, i = 1, . . .m, Ax = b

How to find such a feasible x? By solving

min
x,s

s

subject to hi(x) ≤ s, i = 1, . . .m

Ax = b.

The goal is for s to be negative at the solution. This is known as a
feasibility method. We can apply the barrier method to the above
problem, since it is easy to find a strictly feasible starting point.
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Note that we do not need to solve this problem to high accuracy.
Once we find a feasible (x, s) with s < 0, we can terminate early.

An alternative is to solve the problem

min
x,s

1Ts

subject to hi(x) ≤ si, i = 1, . . .m

Ax = b, s ≥ 0.

Previously s was the maximum infeasibility across all inequalities.
Now each inequality has own infeasibility variable si, i = 1, . . .m.

One advantage: when the original system is infeasible, the solution
of the above problem will be informative. The nonzero entries of s
will tell us which of the constraints cannot be satisfied.
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A formal barrier method

A convex function φ : D → R defined on an open convex set
D ⊆ Rn is a self-concordant barrier with parameter ν if

• φ is self-concordant

• For all x ∈ D we have

λ(x)2 = ∇φ(x)
(
∇2φ(x)

)−1∇φ(x) ≤ ν.
Consider the problem

min
x

cTx

subject to x ∈ D

Approximate with
min
x

tcTx+ φ(x).
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For convenience let φt(x) := tcTx+ φ(x) and let λt(x) denote the
corresponding Newton decrement.

Key observation: for t+ > t

λt+(x) ≤
t+

t
λt(x) +

(
t+

t
− 1

)√
ν.

Theorem
If λt(x) ≤ 1

9 and t+

t ≤ 1 + 1
8
√
ν
then λt+(x

+) ≤ 1
9 for

x+ = x−
(
∇2φt+(x)

)−1∇φt+(x).
Consequently, if we start with x(0), t(0) such that λt(0)(x

(0)) < 1
9

and choose µ := 1 + 1
8
√
ν

in the barrier method, one Newton

iteration suffices at each centering step.
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