
Duality revisited

Javier Peña
Convex Optimization 10-725/36-725

1



Last time: barrier method

Main idea: approximate the problem

min
x

f(x) + IC(x)

subject to Ax = b

with the barrier problem

min
x

f(x) + 1
tφ(x)

subject to Ax = b
⇔

min
x

tf(x) + φ(x)

subject to Ax = b

where t > 0 and φ is a barrier function for C.
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Logarithmic barrier

Common case:

C = {x : hi(x) ≤ 0, i = 1, . . . ,m}.

Logarithmic barrier

φ(x) = −
m∑
i=1

log(−hi(x))

Nice fact: when f, hi are smooth and KKT hold for both original
and barrier problem, the solution x?(t) to barrier problem satisfies

f(x?(t))− f? ≤ m/t.
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Strict feasibility

Important detail: throughout the algorithm, line-search should be
performed so that the iterates satisfy

hi(x) < 0, i = 1, . . .m.

To find an initial x for the barrier problem solve

min
x,s

s

subject to hi(x) ≤ s, i = 1, . . .m

Ax = b.

Stop early: as soon as we find a feasible solution with s < 0.

If the above minimum is positive, then original problem is
infeasible.
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Outline

Today

• Lagrangian duality revisited

• Optimality conditions

• Connection with barrier problems

• Fenchel duality
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Lagrangian duality revisited
Consider the primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Lagrangian

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

We can rewrite the primal problem as

min
x

max
u,v
u≥0

L(x, u, v)

Dual problem
max
u,v
u≥0

min
x

L(x, u, v)
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Weak and strong duality

Theorem (weak duality)

Let p and d denote the optimal values of the above primal and
dual problems respectively. Then p ≥ d.

Theorem (strong duality)

Assume f, h1, . . . , hp are convex with domain D and
hp+1, . . . , hm, `1, . . . , `r are affine.
If there exists x̂ ∈ relint(D) such that

hi(x̂) < 0, i = 1, . . . , p; hi(x̂) ≤ 0, i = p+ 1, . . . ,m

and
`j(x̂) = 0, j = 1, . . . , r

then p = d and the dual optimum is attained if finite.
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Example: linear programming

Primal problem (in standard form)

min
x

cTx

subject to Ax = b
x ≥ 0

Dual problem
max
y,s

bTy

subject to ATy + s = c
s ≥ 0
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Example: convex quadratic programming

Primal problem (in standard form)

min
x

1
2x

TQx+ cTx

subject to Ax = b
x ≥ 0

where Q symmetric and positive semidefinite.

Dual problem

max
u,y,s

bTy − 1
2u

TQu

subject to ATy + s− c = Qu
s ≥ 0
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Example: barrier problem for linear programming

Primal problem

min
x

cTx− τ
n∑

i=1

log(xi)

subject to Ax = b

where τ > 0.

Dual problem

max
y,s

bTy + τ

n∑
i=1

log(si) + n(τ − τ log τ)

subject to ATy + s = c
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Optimality conditions
Consider the problem

min
x

f(x)

subject to Ax = b
h(x) ≤ 0

Here h(x) ≤ 0 is shorthand for hi(x) ≤ 0, i = 1, . . .m.

Assume f, h1, . . . , hm are convex and differentiable. Assume also
that strong duality holds.

Then x? and (u?, v?) are respectively primal and dual optimal
solutions if and only if (x?, u?, v?) solves the KKT conditions

∇f(x) +ATv +∇h(x)u = 0

Ax = b

Uh(x) = 0

u,−h(x) ≥ 0.

Here U = Diag(u), ∇h(x) =
[
∇h1(x) · · · ∇hm(x)

]
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Central path equations

Barrier problem
min
x

f(x) + τφ(x)

Ax = b

where

φ(x) = −
m∑
i=1

log(−hi(x)).

Optimality conditions for barrier problem (and its dual)

∇f(x) +ATv +∇h(x)u = 0

Ax = b

Uh(x) = −τ1
u,−h(x) > 0.
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Special case: linear programming

Primal and dual problems

min
x

cTx

subject to Ax = b
x ≥ 0

max
y,s

bTy

subject to ATy + s = c
s ≥ 0

Optimality conditions for both

ATy + s = c

Ax = b

XS1 = 0

x, s ≥ 0.

Here X = Diag(x), S = Diag(s).
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Algorithms for linear programming

Recall the optimality conditions for linear programming

ATy + s = c

Ax = b

XS1 = 0

x, s ≥ 0.

Two main classes of algorithms

• Simplex: maintain first three and aim for fourth one

• Interior-point methods: maintain fourth (and maybe first and
second) and aim for third one.
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Central path for linear programming

Primal and dual barrier problems

min
x

cTx− τ
n∑

i=1

log(xi)

subject to Ax = b

max
y,s

bTy + τ

n∑
i=1

log(si)

subject to ATy + s = c

Optimality conditions for both

ATy + s = c

Ax = b

XS1 = τ1

x, s > 0.

15



Fenchel duality

Consider the primal problem

min
x

f(x) + g(Ax)

Rewrite it as
min
x

f(x) + g(z)

subject to Ax = z.

Dual problem
max
v
−f∗(ATv)− g∗(−v).

This special type of duality is called Fenchel duality.

Nice fact: if f, g are convex and closed then the dual of the dual is
the primal.
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Example: conic programming

Primal problem (in standard form)

min
x

cTx

subject to Ax = b
x ∈ K

where K is a closed convex cone.

Dual problem
max
y,s

bTy

subject to ATy + s = c
s ∈ K∗

Strong duality holds if one of the problems is strictly feasible.

If both primal and dual are strictly feasible, then strong duality
holds and both primal and dual optima are attained.
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Example: semidefinite programming

Primal
min
X

C •X
subject to Ai •X = bi, i = 1, . . . ,m

X � 0.

Dual
max
y

bTy

subject to

m∑
i=1

yiAi + S = C

S � 0.

Recall trace inner product in Sn

X • S = trace(XS).
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Strong duality does not always hold

Examples

min 2x12[
0 x12
x12 x22

]
� 0.

min x11[
x11 1
1 x22

]
� 0.

min ax22 0 x12 1− x22
x12 x22 x23

1− x22 x23 x33

 � 0, for a > 0.
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Example: barrier problem for semidefinite programming

Primal
min
X

C •X − τ log(det(X))

subject to Ai •X = bi, i = 1, . . . ,m

Dual

max
y,S

bTy + τ log(det(S)) + n(τ − τ log τ)

subject to

m∑
i=1

yiAi + S = C
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Optimality conditions for semidefinite programming
Primal and dual problems

min
X

C •X
subject to A(X) = b

X � 0

max
y,S

bTy

subject to A∗(y) + S = C
C � 0

Here A : Sn → Rm linear map.

Assume also that strong duality holds. Then X? and (y?, S?) are
respectively primal and dual optimal solutions if and only if
(X?, y?, S?) solves

A∗(y) + S = C

A(X) = b

XS = 0

X,S � 0.
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Central path for semidefinite programming
Primal barrier problem

min
X

C •X − τ log(det(X))

subject to A(X) = b

Dual barrier problem

max
y,S

bTy + τ log(det(S))

subject to A∗(y) + S = C

Optimality conditions for both

A∗(y) + S = C

A(X) = b

XS = τI

X, S � 0.
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