Integer programming (part 1)

Lecturer: Javier Peña Convex Optimization 10-725/36-725

Coordinate descent

Assume $f(x) = g(x) + \sum_{i=1}^{n} h_i(x_i)$, with g convex, differentiable and each h_i convex.

To minimize f: start with some initial guess $x^{(0)}$, and repeat

$$x_{1}^{(k)} \in \underset{x_{2}}{\operatorname{argmin}} f\left(x_{1}, x_{2}^{(k-1)}, x_{3}^{(k-1)}, \dots, x_{n}^{(k-1)}\right)$$

$$x_{2}^{(k)} \in \underset{x_{2}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, x_{2}, x_{3}^{(k-1)}, \dots, x_{n}^{(k-1)}\right)$$

$$x_{3}^{(k)} \in \underset{x_{2}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}, \dots, x_{n}^{(k-1)}\right)$$

$$\dots$$

$$x_{n}^{(k)} \in \underset{x_{2}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}, \dots, x_{n}\right)$$

for k = 1, 2, 3, ...

Outline

Today:

- (Mixed) integer programming
- Examples
- Solution techniques:
 - relaxation
 - branch and bound
 - cutting planes

(Mixed) integer program

Optimization model where some variables are restricted to be integer

$$\begin{array}{ll}
\min_{x} & f(x) \\
\text{subject to} & x \in C \\
& x_j \in \mathbb{Z}, \ j \in J
\end{array}$$

where $f : \mathbb{R}^n \to \mathbb{R}, \ C \subseteq \mathbb{R}^n$ and $J \subseteq \{1, \dots, n\}$.

When $J = \{1, ..., n\}$, the above problem is a pure integer program.

Throughout our discussion assume f and C are convex.

Special case: binary variables

In some cases the variables of an integer program represent yes/no decisions or logical variables.

These kinds of decisions can be encoded via binary variables that take values $0 \mbox{ or } 1.$

Combinatorial optimization

A combinatorial optimization problem is a triple (N,\mathcal{F},c) where

- N is a finite ground set
- $\mathcal{F} \subseteq 2^N$ is a set of feasible solutions
- $c \in \mathbb{R}^N$ is a cost function

The goal is to solve

$$\min_{S \in \mathcal{F}} \sum_{i \in S} c_i$$

Many combinatorial optimization problems can be written as binary integer programs.

Knapsack problem

Determine the most valuable items to take in a limited volume knapsack.

$$\max_{x} c^{\mathsf{T}}x$$

subject to $a^{\mathsf{T}}x \leq b$
 $x_{j} \in \{0,1\}, j = 1, \dots, n$

here c_j and a_j are the value and volume of item j and b is the volume of the knapsack.

Assignment problem

There are n people available to carry n jobs. Each person can be assigned to exactly one job. There is a cost c_{ij} if person i is assigned to job j.

Find minimum cost assignment.

$$\min_{x} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\sum_{i=1}^{n} x_{ij} = 1, \ j = 1, \dots, n \\
\sum_{j=1}^{n} x_{ij} = 1, \ i = 1, \dots, n \\
x_{ij} \in \{0, 1\}, \ i = 1, \dots, n, \ j = 1, \dots, n.$$

Facility location

There are $N = \{1, ..., n\}$ depots and $M = \{1, ..., m\}$ clients. Fixed cost f_j associated to the use of depot j

Transportation cost c_{ij} if client *i* is served from depot *j*.

Determine what depots to open and what clients each depot serves to minimize the sum of fixed and transportation costs.

$$\min_{x,y} \sum_{j=1}^{n} f_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\sum_{j=1}^{n} x_{ij} = 1, \ i = 1, \dots, n \\
x_{ij} \le y_j, \ i = 1, \dots, m, \ j = 1, \dots, n \\
x_{ij} \in \{0, 1\}, \ i = 1, \dots, m, \ j = 1, \dots, n \\
y_j \in \{0, 1\}, \ j = 1, \dots, n$$

Facility location (alternative formulation)

Since all variables are binary, the mn constraints

$$x_{ij} \le y_j, \ i = 1, \dots, m, \ j = 1, \dots, n$$

can be replaced by the n constraints

$$\sum_{i=1}^{m} x_{ij} \le m y_j, \ j = 1, \dots, n$$

Alternative formulation

$$\min_{x,y} \sum_{\substack{j=1\\n}}^{n} f_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\sum_{\substack{j=1\\m}}^{n} x_{ij} = 1, \ i = 1, \dots, n \\
\sum_{\substack{i=1\\x_{ij} \in \{0,1\}, \ i = 1, \dots, m, \ j = 1, \dots, n} \\
y_j \in \{0,1\}, \ j = 1, \dots, n$$

K-means and K-medoids clustering Assume $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$.

K-means

Find partition $S_1 \cup \cdots \cup S_K = \{1, \ldots, n\}$ that minimizes

$$\sum_{i=1}^{K} \sum_{j \in S_i} \|x^{(j)} - \mu^{(i)}\|^2$$

where $\mu^{(i)} := \frac{1}{|S_i|} \sum_{j \in S_i} x^{(i)}, \,\, \text{centroid of cluster } i.$

K-medoids Find partition $S_1 \cup \cdots \cup S_K = \{1, \ldots, n\}$ and select $y^{(i)} \in \{x^{(j)} : j \in S_i\}, i = 1, \ldots, K$ to minimize

$$\sum_{i=1}^{K} \sum_{j \in S_i} \|x^{(j)} - y^{(i)}\|^2$$

Best subset selection

Assume $X = \begin{bmatrix} x^1 & \cdots & x^p \end{bmatrix} \in \mathbb{R}^{n \times p}$ and $y \in \mathbb{R}^n$. Best subset selection problem:

Best subset selection problem:

$$\min_{\beta} \quad \frac{1}{2} \|y - X\beta\|_2^2$$

subject to $\|\beta\|_0 \le k$

Here $\|\beta\|_0 :=$ number of nonzero entries of β .

Can you give an integer programming formulation to this problem?

Least median of squares regression Assume $X = \begin{bmatrix} x^1 & \cdots & x^p \end{bmatrix} \in \mathbb{R}^{n \times p}$ and $y \in \mathbb{R}^n$. Given $\beta \in \mathbb{R}^p$ let $r := y - X\beta$

Observe

• Least squares (LS):
$$\beta_{LS} := \operatorname*{argmin}_{eta} \sum_{i} r_i^2$$

• Least absolute deviation (LAD): $eta_{LAD} = \operatorname*{argmin}_{eta} \sum_i |r_i|$

Least Median of Squares (LMS)

$$\beta_{LMS} := \underset{\beta}{\operatorname{argmin}} (\operatorname{\mathsf{median}} |r_i|).$$

Can you give an integer programming formulation for LMS?

How hard is integer programming?

- Solving integer programs is much more difficult than solving convex optimization problems.
- Integer programming is NP-hard. There are no known polynomial-time algorithms for solving integer programs.
- Solving the associated convex relaxation (ignoring integrality constraints) results in an lower bound on the optimal value.
- The convex relaxation may only convey limited information:
 - Rounding to a feasible integer solution may be difficult
 - The optimal solution to the relaxation can be arbitrarily far away from the optimal solution to the integer program
 - Rounding may result in a solution far from optimal

Techniques for solving integer programs

Consider an integer program

 $z := \min_{x \in X} f(x)$

(Assume X includes both convex and integrality constraints.)

Unlike convex optimization, there are no straightforward "optimality conditions" to verify that a feasible point $x^* \in X$ is optimal.

A naive alternative: find a lower bound $\underline{z} \leq z$ and an upper bound $\overline{z} \geq z$ with $\underline{z} = \overline{z}$.

Techniques for solving integer programs

Consider an integer program

$$z := \min_{x \in X} f(x)$$

Algorithmic template

Find a decreasing sequence of upper bounds

 $\overline{z}_1 \geq \overline{z}_2 \geq \cdots \overline{z}_s \geq z$

and an increasing sequence of lower bounds

$$\underline{z}_1 \leq \underline{z}_2 \leq \cdots \underline{z}_t \leq z$$

stop when $\overline{z}_s - \underline{z}_t \leq \epsilon$ for some specified tolerance $\epsilon > 0$.

Primal and dual bounds

How can we find upper and lower bounds for the problem

 $z := \min_{x \in X} f(x)$

Primal bounds

Any feasible $x \in X$ yields an upper bound $f(x) \ge z$. In some problems it is easy to find feasible solutions but this is not always the case.

Dual bounds

Finding lower bounds poses a different challenge. They are often called "dual" for reasons that will become apparent soon. The most commonly used lower bounds are via relaxations.

Relaxations

We say that the problem

 $\min_{x \in Y} g(x)$

is a relaxation of the problem

 $\min_{x \in X} f(x)$

if

- $\bullet \ X \subseteq Y$
- $g(x) \leq f(x)$ for all $x \in X$

Observe that the optimal value of a relaxation is a lower bound on the optimal value of the original problem.

Convex relaxations

Consider the problem

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{subject to} & x \in C \\ & x_{j} \in \mathbb{Z}, \ j \in J \end{array}$$

where $f : \mathbb{R}^n \to \mathbb{R}, \ C \subseteq \mathbb{R}^n$ are convex and $J \subseteq \{1, \dots, n\}$.

Convex relaxation:

 $\begin{array}{ll} \min_{x} & f(x) \\ \text{subject to} & x \in C \end{array}$

Lagrangian relaxations

Consider a problem of the form

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{subject to} & Ax \leq b \\ & x \in X \end{array}$$

If this problem is difficult, consider shifting some of the constraints to the objective: For $u \ge 0$ consider the Lagrangian relaxation

$$L(u) := \min_{\substack{x \\ \text{subject to}}} f(x) + u^{\mathsf{T}}(Ax - b)$$

Observe that $L(u) \leq z$ for all $u \geq 0$. The best (highest) such bound can be obtained by solving the dual problem

$$\max_{u \ge 0} L(u)$$

Observe that the dual is a concave maximization problem.

Lagrangian relaxation for facility location

Recall the facility location problem

$$\min_{x,y} \sum_{j=1}^{n} f_{j}y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij} \\
\sum_{j=1}^{n} x_{ij} = 1, \ i = 1, \dots, n \\
x_{ij} \le y_{j}, \ i = 1, \dots, m, \ j = 1, \dots, n \\
x_{ij}, y_{j} \in \{0, 1\}, \ i = 1, \dots, m, \ j = 1, \dots, n$$

Lagrangian relaxation: for unrestricted \boldsymbol{v}

$$L(v) := \min_{x,y} \sum_{j=1}^{n} f_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} (c_{ij} - v_i) x_{ij} + \sum_{i=1}^{m} v_i$$
$$x_{ij} \le y_j, \ i = 1, \dots, m, \ j = 1, \dots, n$$
$$x_{ij}, y_j \in \{0, 1\}, \ i = 1, \dots, m, \ j = 1, \dots, n$$

Lagrangian relaxation for facility location

For each v, the Lagrangian relaxation L(v) is easily solvable:

$$x_{ij}(v) = \begin{cases} 1 & \text{if } c_{ij} - v_i < 0 \text{ and } \sum_{\ell} (c_{\ell j} - v_{\ell})^- + f_j < 0 \\ 0 & \text{otherwise} \end{cases}$$

$$y_j(v) = \begin{cases} 1 & \text{if } \sum_{\ell} (c_{\ell j} - v_{\ell})^- + f_j < 0\\ 0 & \text{otherwise.} \end{cases}$$

This gives both a lower bound L(v) and a heuristic primal solution.

Furthermore, the subdifferential of -L(v) is easy to compute.

Thus we can use a subgradient method to solve

$$\max_{v} L(v) \Leftrightarrow \min_{v} -L(v).$$

Branch and bound (B&B)

This is the most common algorithm for solving integer programs.

It is a divide and conquer approach.

Let $X = X_1 \cup X_2 \cup \cdots \cup X_k$ be a partition of X. Thus

$$\min_{x \in X} f(x) = \min_{i=1,\dots,k} \{ \min_{x \in X_i} f(x) \}.$$

Observe

- A feasible solution to any of the subproblems yields an upper bound u(X) on the original problem.
- Key idea: obtain a lower bound $\ell(X_i)$ for each $\min_{x \in X_i} f(x)$.
- If $\ell(X_i) \ge u(X)$ then we do not need to consider $\min_{x \in X_i} f(x)$.

Branch and bound algorithm

Consider the problem

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{subject to} & x \in C \\ & x_{j} \in \mathbb{Z}, \ j \in J \end{array} \tag{IP}$$

where $f : \mathbb{R}^n \to \mathbb{R}, \ C \subseteq \mathbb{R}^n$ are convex and $J \subseteq \{1, \dots, n\}$.

1. Solve the convex relaxation

$$\begin{array}{ccc}
\min_{x} & f(x) \\
\text{ubject to} & x \in C
\end{array} \tag{CR}$$

2. (CR) infeasible \Rightarrow (IP) is infeasible. Stop

S

- 3. Solution x^* to (CR) is (IP) feasible $\Rightarrow x^*$ solution to (P). Stop
- 4. Solution x^* to (CR) not (IP) feasible \Rightarrow lower bound for (IP). Branch and recursively solve subproblems.

After branching

Key component of B&B

- After branching solve each of the subproblems.
- If a lower bound for a subproblem is larger than the current upper bound, no need to consider the subproblem.
- Most straightforward way to compute lower bounds is via a convex relaxation but other methods (e.g., Lagrangian relaxations) can also be used.

Tightness of relaxations

Suppose we have two equivalent formulations (e.g., facility location)

 $\begin{array}{cccc} \min_{x} & f(x) & \min_{x} & f(x) \\ \text{subject to} & x \in C & \text{subject to} & x \in C' \\ & x_j \in \mathbb{Z}, \ j \in J & & x_j \in \mathbb{Z}, \ j \in J \end{array}$ with $C \subseteq C'$.

Which one should we prefer?

Convexification

Consider the special case of an integer program with linear objective

$$\begin{array}{ll} \min_{x} & c^{\mathsf{T}}x \\ \text{subject to} & x \in C \\ & x_{j} \in \mathbb{Z}, \ j \in J \end{array}$$

This problem is equivalent to

$$\min_{x} \quad c^{\mathsf{T}}x$$

subject to $\quad x \in S$

where $S := \operatorname{conv} \{ x \in C : x_j \in \mathbb{Z}, \ j \in J \}.$

Special case: integer linear programs

Consider the problem

$$\begin{array}{ll} \min_{x} & c^{\mathsf{T}}x \\ \text{subject to} & Ax \leq b \\ & x_{j} \in \mathbb{Z}, \ j \in J \end{array}$$

Theorem If A, b are rational, then the set

$$S := \operatorname{conv} \{ x : Ax \le b, \ x_j \in \mathbb{Z}, \ j \in J \}$$

is a polyhedron.

Thus the above integer linear program is equivalent to a linear program.

How hard could that be?

Cutting plane algorithm

We say that the inequality $\pi^{\mathsf{T}} x \leq \pi_0$ is valid for a set S if

$$\pi^{\mathsf{T}} x \leq \pi_0$$
 for all $x \in S$.

Consider the problem

$$\begin{array}{ll}
\min_{x} & c^{\mathsf{T}}x \\
\text{subject to} & x \in C \\
& x_{j} \in \mathbb{Z}, \ j \in J
\end{array}$$

and let $S := \operatorname{conv} \{ x \in C : x_j \in \mathbb{Z}, j \in J \}.$

Cutting plane algorithm

Recall: $S = \operatorname{conv} \{ x \in C : x_j \in \mathbb{Z}, j \in J \}$ and want to solve

$$\begin{array}{ll}
\min_{x} & c^{\mathsf{T}}x \\
\text{subject to} & x \in C \\
& x_{j} \in \mathbb{Z}, \ j \in J
\end{array} \tag{IP}$$

Cutting plane algorithm

- 1. let $C_0 := C$ and compute $x^{(0)} := \operatorname{argmin} \{ c^{\mathsf{T}} x : x \in C_0 \}$
- 2. for $k=0,1,\ldots$ if $x^{(k)}$ is (IP) feasible then $x^{(k)}$ is an optimal solution. Stop else

find a valid inequality (π, π_0) for S that cuts off $x^{(k)}$ let $C_{k+1} := C_k \cap \{x : \pi^T x \le \pi_0\}$ compute $x^{(k+1)} := \operatorname{argmin}\{c^T x : x \in C_{k+1}\}$ end if end for

A valid inequality is also called a cutting plane or a cut

References and further reading

- Conforti, Cornuejols, and Zambelli (2014), "Integer programming"
- Wolsey (1998), "Integer programming"
- Belotti, Kirches, Leyffer, Linderoth, Luedke, and Mahajan (2012), "Mixed-integer nonlinear optimization"