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Coordinate descent

Assume f(x) = g(x) +
∑n

i=1 hi(xi), with g convex, differentiable
and each hi convex.

To minimize f : start with some initial guess x(0), and repeat
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Outline

Today:

• (Mixed) integer programming

• Examples

• Solution techniques:
I relaxation
I branch and bound
I cutting planes
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(Mixed) integer program

Optimization model where some variables are restricted to be
integer

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

where f : Rn → R, C ⊆ Rn and J ⊆ {1, . . . , n}.

When J = {1, . . . , n}, the above problem is a pure integer
program.

Throughout our discussion assume f and C are convex.
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Special case: binary variables
In some cases the variables of an integer program represent yes/no
decisions or logical variables.

These kinds of decisions can be encoded via binary variables that
take values 0 or 1.

Combinatorial optimization

A combinatorial optimization problem is a triple (N,F , c) where

• N is a finite ground set

• F ⊆ 2N is a set of feasible solutions

• c ∈ RN is a cost function

The goal is to solve

min
S∈F

∑
i∈S

ci

Many combinatorial optimization problems can be written as
binary integer programs.
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Knapsack problem

Determine the most valuable items to take in a limited volume
knapsack.

max
x

cTx

subject to aTx ≤ b
xj ∈ {0, 1}, j = 1, . . . , n

here cj and aj are the value and volume of item j and b is the
volume of the knapsack.
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Assignment problem

There are n people available to carry n jobs. Each person can be
assigned to exactly one job. There is a cost cij if person i is
assigned to job j.

Find minimum cost assignment.

min
x

n∑
i=1

n∑
j=1

cijxij

n∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

xij = 1, i = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n.
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Facility location

There are N = {1, . . . , n} depots and M = {1, . . . ,m} clients.

Fixed cost fj associated to the use of depot j

Transportation cost cij if client i is served from depot j.

Determine what depots to open and what clients each depot serves
to minimize the sum of fixed and transportation costs.

min
x,y

n∑
j=1

fjyj +
m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1, i = 1, . . . , n

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n
xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
yj ∈ {0, 1}, j = 1, . . . , n
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Facility location (alternative formulation)
Since all variables are binary, the mn constraints

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n

can be replaced by the n constraints
m∑
i=1

xij ≤ myj , j = 1, . . . , n

Alternative formulation

min
x,y

n∑
j=1

fjyj +

m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1, i = 1, . . . , n

m∑
i=1

xij ≤ myj , j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
yj ∈ {0, 1}, j = 1, . . . , n
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K-means and K-medoids clustering
Assume x(1), . . . , x(n) ∈ Rd.

K-means
Find partition S1 ∪ · · · ∪ SK = {1, . . . , n} that minimizes

K∑
i=1

∑
j∈Si

‖x(j) − µ(i)‖2

where µ(i) := 1
|Si|
∑

j∈Si
x(i), centroid of cluster i.

K-medoids
Find partition S1 ∪ · · · ∪ SK = {1, . . . , n} and select
y(i) ∈ {x(j) : j ∈ Si}, i = 1, . . . ,K to minimize

K∑
i=1

∑
j∈Si

‖x(j) − y(i)‖2
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Best subset selection

Assume X =
[
x1 · · · xp

]
∈ Rn×p and y ∈ Rn.

Best subset selection problem:

min
β

1
2‖y −Xβ‖

2
2

subject to ‖β‖0 ≤ k

Here ‖β‖0 := number of nonzero entries of β.

Can you give an integer programming formulation to this problem?
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Least median of squares regression
Assume X =

[
x1 · · · xp

]
∈ Rn×p and y ∈ Rn.

Given β ∈ Rp let r := y −Xβ

Observe

• Least squares (LS): βLS := argmin
β

∑
i

r2i

• Least absolute deviation (LAD): βLAD = argmin
β

∑
i

|ri|

Least Median of Squares (LMS)

βLMS := argmin
β

(median|ri|).

Can you give an integer programming formulation for LMS?
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How hard is integer programming?

• Solving integer programs is much more difficult than solving
convex optimization problems.

• Integer programming is NP-hard. There are no known
polynomial-time algorithms for solving integer programs.

• Solving the associated convex relaxation (ignoring integrality
constraints) results in an lower bound on the optimal value.

• The convex relaxation may only convey limited information:
I Rounding to a feasible integer solution may be difficult
I The optimal solution to the relaxation can be arbitrarily far

away from the optimal solution to the integer program
I Rounding may result in a solution far from optimal
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Techniques for solving integer programs

Consider an integer program

z := min
x∈X

f(x)

(Assume X includes both convex and integrality constraints.)

Unlike convex optimization, there are no straightforward
“optimality conditions” to verify that a feasible point x? ∈ X is
optimal.

A naive alternative: find a lower bound z ≤ z and an upper bound
z ≥ z with z = z.
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Techniques for solving integer programs

Consider an integer program

z := min
x∈X

f(x)

Algorithmic template

Find a decreasing sequence of upper bounds

z1 ≥ z2 ≥ · · · zs ≥ z

and an increasing sequence of lower bounds

z1 ≤ z2 ≤ · · · zt ≤ z

stop when zs − zt ≤ ε for some specified tolerance ε > 0.
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Primal and dual bounds

How can we find upper and lower bounds for the problem

z := min
x∈X

f(x)

Primal bounds
Any feasible x ∈ X yields an upper bound f(x) ≥ z.
In some problems it is easy to find feasible solutions but this is not
always the case.

Dual bounds
Finding lower bounds poses a different challenge. They are often
called “dual” for reasons that will become apparent soon.
The most commonly used lower bounds are via relaxations.
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Relaxations

We say that the problem

min
x∈Y

g(x)

is a relaxation of the problem

min
x∈X

f(x)

if

• X ⊆ Y
• g(x) ≤ f(x) for all x ∈ X

Observe that the optimal value of a relaxation is a lower bound on
the optimal value of the original problem.
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Convex relaxations

Consider the problem

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

where f : Rn → R, C ⊆ Rn are convex and J ⊆ {1, . . . , n}.

Convex relaxation:

min
x

f(x)

subject to x ∈ C
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Lagrangian relaxations
Consider a problem of the form

min
x

f(x)

subject to Ax ≤ b
x ∈ X

If this problem is difficult, consider shifting some of the constraints
to the objective: For u ≥ 0 consider the Lagrangian relaxation

L(u) := min
x

f(x) + uT(Ax− b)
subject to x ∈ X

Observe that L(u) ≤ z for all u ≥ 0. The best (highest) such
bound can be obtained by solving the dual problem

max
u≥0

L(u)

Observe that the dual is a concave maximization problem.
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Lagrangian relaxation for facility location

Recall the facility location problem

min
x,y

n∑
j=1

fjyj +

m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1, i = 1, . . . , n

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n
xij , yj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n

Lagrangian relaxation: for unrestricted v

L(v) := min
x,y

n∑
j=1

fjyj +

m∑
i=1

n∑
j=1

(cij − vi)xij +
m∑
i=1

vi

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n
xij , yj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
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Lagrangian relaxation for facility location

For each v, the Lagrangian relaxation L(v) is easily solvable:

xij(v) =

{
1 if cij − vi < 0 and

∑
`(c`j − v`)− + fj < 0

0 otherwise

yj(v) =

{
1 if

∑
`(c`j − v`)− + fj < 0

0 otherwise.

This gives both a lower bound L(v) and a heuristic primal solution.

Furthermore, the subdifferential of −L(v) is easy to compute.

Thus we can use a subgradient method to solve

max
v

L(v) ⇔ min
v
−L(v).
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Branch and bound (B&B)

This is the most common algorithm for solving integer programs.

It is a divide and conquer approach.

Let X = X1 ∪X2 ∪ · · · ∪Xk be a partition of X. Thus

min
x∈X

f(x) = min
i=1,...,k

{min
x∈Xi

f(x)}.

Observe

• A feasible solution to any of the subproblems yields an upper
bound u(X) on the original problem.

• Key idea: obtain a lower bound `(Xi) for each min
x∈Xi

f(x).

• If `(Xi) ≥ u(X) then we do not need to consider min
x∈Xi

f(x).
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Branch and bound algorithm
Consider the problem

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

(IP)

where f : Rn → R, C ⊆ Rn are convex and J ⊆ {1, . . . , n}.

1. Solve the convex relaxation

min
x

f(x)

subject to x ∈ C
(CR)

2. (CR) infeasible ⇒ (IP) is infeasible. Stop

3. Solution x? to (CR) is (IP) feasible ⇒ x? solution to (P). Stop

4. Solution x? to (CR) not (IP) feasible ⇒ lower bound for (IP).
Branch and recursively solve subproblems.
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After branching

Key component of B&B

• After branching solve each of the subproblems.

• If a lower bound for a subproblem is larger than the current
upper bound, no need to consider the subproblem.

• Most straightforward way to compute lower bounds is via a
convex relaxation but other methods (e.g., Lagrangian
relaxations) can also be used.
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Tightness of relaxations

Suppose we have two equivalent formulations
(e.g., facility location)

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

min
x

f(x)

subject to x ∈ C ′
xj ∈ Z, j ∈ J

with C ⊆ C ′.

Which one should we prefer?
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Convexification

Consider the special case of an integer program with linear
objective

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

This problem is equivalent to

min
x

cTx

subject to x ∈ S

where S := conv{x ∈ C : xj ∈ Z, j ∈ J}.
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Special case: integer linear programs

Consider the problem

min
x

cTx

subject to Ax ≤ b
xj ∈ Z, j ∈ J

Theorem
If A, b are rational, then the set

S := conv{x : Ax ≤ b, xj ∈ Z, j ∈ J}

is a polyhedron.

Thus the above integer linear program is equivalent to a linear
program.

How hard could that be?
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Cutting plane algorithm

We say that the inequality πTx ≤ π0 is valid for a set S if

πTx ≤ π0 for all x ∈ S.

Consider the problem

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

and let S := conv{x ∈ C : xj ∈ Z, j ∈ J}.
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Cutting plane algorithm
Recall: S = conv{x ∈ C : xj ∈ Z, j ∈ J} and want to solve

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

(IP)

Cutting plane algorithm

1. let C0 := C and compute x(0) := argmin{cTx : x ∈ C0}
2. for k = 0, 1, . . .

if x(k) is (IP) feasible then x(k) is an optimal solution. Stop
else

find a valid inequality (π, π0) for S that cuts off x(k)

let Ck+1 := Ck ∩ {x : πTx ≤ π0}
compute x(k+1) := argmin{cTx : x ∈ Ck+1}

end if
end for

A valid inequality is also called a cutting plane or a cut
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