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Last time: integer programming

Consider the problem

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

where f : Rn → R, C ⊆ Rn are convex, and J ⊆ {1, . . . , n}.

Branch and bound
Algorithm to solve integer programs.
Divide-and-conquer scheme combined with upper and lower
bounds for efficiency.
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Branch and bound algorithm
Consider the problem

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

(IP)

where f : Rn → R, C ⊆ Rn are convex and J ⊆ {1, . . . , n}.

1. Solve the convex relaxation

min
x

f(x)

subject to x ∈ C
(CR)

2. (CR) infeasible ⇒ (IP) is infeasible. Stop

3. Solution x? to (CR) is (IP) feasible ⇒ x? solves (IP). Stop

4. Solution x? to (CR) not (IP) feasible ⇒ lower bound for (IP).
Branch and recursively solve subproblems.
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After branching

Key component of B&B

• After branching compute a lower bound for each subproblem.

• If a lower bound for a subproblem is larger than the current
upper bound, no need to consider the subproblem.

• Most straightforward way to compute lower bounds is via a
convex relaxation but other methods (e.g., Lagrangian
relaxations) can also be used.
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Tightness of relaxations

Suppose we have two equivalent formulations
(e.g., facility location)

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

min
x

f(x)

subject to x ∈ C ′
xj ∈ Z, j ∈ J

with C ⊆ C ′.

Which one should we prefer?
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Outline

Today:

• More about solution techniques
I Cutting planes
I Branch and cut

• Two extended examples
I Best subset selection
I Least mean squares
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Convexification

Consider the special case of an integer program with linear
objective

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

This problem is equivalent to

min
x

cTx

subject to x ∈ S

where S := conv{x ∈ C : xj ∈ Z, j ∈ J}.
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Special case: integer linear programs

Consider the problem

min
x

cTx

subject to Ax ≤ b
xj ∈ Z, j ∈ J

Theorem
If A, b are rational, then the set

S := conv{x : Ax ≤ b, xj ∈ Z, j ∈ J}

is a polyhedron.

Thus the above integer linear program is equivalent to a linear
program.

How hard could that be?
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Cutting plane algorithm

We say that the inequality πTx ≤ π0 is valid for a set S if

πTx ≤ π0 for all x ∈ S.

Consider the problem

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

and let S := conv{x ∈ C : xj ∈ Z, j ∈ J}.
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Cutting plane algorithm
Recall: S = conv{x ∈ C : xj ∈ Z, j ∈ J} and want to solve

min
x

cTx

subject to x ∈ C
xj ∈ Z, j ∈ J

(IP)

Cutting plane algorithm

1. let C0 := C and compute x(0) := argmin
x
{cTx : x ∈ C0}

2. for k = 0, 1, . . .
if x(k) is (IP) feasible then x(k) is an optimal solution. Stop
else

find a valid inequality (π, π0) for S that cuts off x(k)

let Ck+1 := Ck ∩ {x : πTx ≤ π0}
compute x(k+1) := argminx{cTx : x ∈ Ck+1}

end if
end for

A valid inequality is also called a cutting plane or a cut 10



A bit of history on cutting planes

In 1954 Dantzig, Fulkerson, and Johnson pioneered the cutting
plane approach for the traveling salesman problem. In 1958
Gomory proposed a general-purpose cutting plane method to solve
any integer linear program.

For more than three decades Gomory cuts were deemed impractical
for solving actual problems. In the early 1990s Sebastian Ceria (at
CMU) successfully incorporated Gomory cuts in a branch and cut
framework. By the late 1990s cutting planes had become a key
component of commercial optimization solvers.

This subject has a long tradition at Carnegie Mellon and is
associated to some of our biggest names: Balas, Cornuejols,
Jeroslow, Kilinc-Karzan and many of their collaborators.
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Gomory cuts (1958)

This class of cuts is based on the following observation:

if a ≤ b and a is an integer then a ≤ bbc.

Suppose

S ⊆

x ∈ Zn+ :

n∑
j=1

ajxj = a0


where a0 6∈ Z. The Gomory fractional cut is

n∑
j=1

(aj − bajc)xj ≥ a0 − ba0c.

There is a rich variety of extensions of the above idea: Chvatal
cuts, split cuts, lift-and-project cuts, etc.
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Lift-and-project cuts

Theorem (Balas 1974)

Assume C = {x : Ax ≤ b} ⊆ {x : 0 ≤ xj ≤ 1}. Then
Cj :=conv{x ∈ C : xj ∈ {0, 1}} is the projection of the
polyhedron Lj(C) defined by the following inequalities

Ay ≤ λb
Az ≤ (1− λ)b

y + z = x
λ ≤ 1
λ ≥ 0.

Suppose x̃ ∈ C but x̃ 6∈ Cj . To find a cut separating x̃ from Cj
solve

min
x,y,z,λ

‖x− x̃‖

subject to (x, y, z, λ) ∈ Lj(C)
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Branch and cut algorithm

Combine strengths of both branch and bound and cutting planes.

Consider the problem

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

(IP)

where f : Rn → R, C ⊆ Rn are convex and J ⊆ {1, . . . , n}.
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Branch and cut algorithm

Branch and cut algorithm

1. Solve the convex relaxation

min
x

f(x)

subject to x ∈ C
(CR)

2. (CR) infeasible ⇒ (IP) is infeasible.

3. Solution x? to (CR) is (IP) feasible ⇒ x? solution to (IP).

4. Solution x? to (CR) is not (IP) feasible.
Choose between two alternatives

4.1 Add cuts and go back to step 1
4.2 Branch and recursively solve subproblems
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Integer programming technology

• State-of-the-art solvers (Gurobi, CPLEX, FICO) rely on
extremely efficient implementations of numerical linear
algebra, simplex, interior-point, and other algorithms for
convex optimization.

• For mixed integer optimization, most solvers use a clever type
of branch and cut algorithm. They rely extensively on convex
relaxations. They also take advantage of warm starts as much
as possible.

• Some interesting numbers
Speedup in algorithms 1990–2016: over 500,000
Speedup in hardware 1990–2016: over 500,000
Total speedup over 250 billion = 2.5 · 1011
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Best subset selection

Assume X =
[
x1 · · · xp

]
∈ Rn×p and y ∈ Rn.

Best subset selection problem:

min
β

1
2‖y −Xβ‖

2
2

subject to ‖β‖0 ≤ k

Here ‖β‖0 := number of nonzero entries of β.
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Best subset selection

Integer programming formulation

min
β,z

1

2
‖y −Xβ‖22

subject to |βi| ≤Mi · zi, i = 1, . . . , p
p∑
i=1

zi ≤ k

zi ∈ {0, 1}, i = 1, . . . , p.

Here Mi is some a priori known bound on |βi| for i = 1, . . . , p.
They can be computed via suitable preprocessing of X, y.
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A clever way to get good feasible solutions
Bertsimas, King, and Mazumder

Consider the problem

min
β
g(β) subject to ‖β‖0 ≤ k

where g : Rp → R is smooth convex and ∇g is L-Lipschitz.

Best subset selection corresponds to g(β) = 1
2‖Xβ − y‖

2
2.

Observation
For u ∈ Rp the vector

Hk(u) = argmin
β:‖β‖0≤k

‖β − u‖22

is obtained by retaining the k largest entries of u.
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Discrete first-order algorithm
Bertsimas et al.

Consider the problem

min
β
g(β) subject to ‖β‖0 ≤ k

where g : Rp → R is smooth convex and ∇g is L-Lipschitz.

1. start with some β(0)

2. for i = 0, 1, . . . ,
β(i+1) = Hk

(
β(i) − 1

L∇g(β(i))
)

end for

The above iterates satisfy β(i) → β̄ where

β̄ = Hk

(
β̄ − 1

L
∇g(β̄)

)
.

This is a kind of “local” solution to the above minimization
problem.
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Computational results (Bertsimas et al.)
Diabetes dataset, n = 350, p = 64, k = 6

Best Subset Regression

Diabetes Dataset, n = 350, p = 64, k = 6

Typical behavior of Overall Algorithm
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Diabetes Dataset, n = 350, p = 64, k = 6
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Computational results (Bertsimas et al.)
Cold vs Warm Starts

838 D. BERTSIMAS, A. KING AND R. MAZUMDER

TABLE 1
Quality of upper bounds for problem (1.1) for the Diabetes dataset, for different values of k. We

observe that MIO equipped with warm starts deliver the best upper bounds in the shortest overall
times. The run time for the MIO with warm start includes the time taken by the discrete

first-order method

Discrete first-order MIO cold start MIO warm start

k Accuracy Time Accuracy Time Accuracy Time

9 0.1306 1 0.0036 500 0 346
20 0.1541 1 0.0042 500 0 77
49 0.1915 1 0.0015 500 0 87
57 0.1933 1 0 500 0 2

seconds to run. We used the best solution as an advanced warm start to the MIO
formulation (2.5). The MIO solver was provided with problem-specific bounds ob-
tained via Section 2.3.3 with τ = 2. For each of these examples, we also ran the
MIO formulation without any such additional problem-specific information, that
is, formulation (2.4)—we refer to this as “Cold Start.” Figure 3 presents a represen-
tative subset of the results. We also experimented (not reported here, for brevity)
with bounds implied by Sections 2.3.1, 2.3.2 and observed that the MIO formula-
tion (2.5) armed with warm-starts and additional bounds closed the optimality gap
faster than their “Cold Start” counterpart.

FIG. 3. The evolution of the MIO optimality gap [in log10(·) scale] for problem (1.1), for the
Diabetes dataset with n = 350,p = 64, for different values of k. Here, “Warm Start” indicates
that the MIO was provided with warm starts and parameter specifications as in Section 2.3; and
“Cold Start” indicates that MIO was not provided with any such problem-specific information. MIO
(“Warm Start”) is found close the optimality gap much faster. In all of these examples, the global
optimum was found within a very small fraction of the total time, but the proof of global optimality
came later.
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Computational results (Bertsimas et al.)
Sparsity detection (synthetic datasets)

Best Subset Regression

Sparsity Detection for n = 500, p = 100
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Least median of squares regression

Assume X =
[
x1 · · · xp

]
∈ Rn×p and y ∈ Rn.

Given β ∈ Rp let r := y −Xβ

Observe

• Least squares (LS): βLS := argmin
β

∑
i

r2
i

• Least absolute deviation (LAD): βLAD = argmin
β

∑
i

|ri|

Least Median of Squares (LMS)

βLMS := argmin
β

(median|ri|).
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Least quantile regression

Least Quantile of Squares (LQS)

βLQS := argmin
β
|r(q)|

where r(q) is the qth ordered absolute residual:

|r(1) ≤ |r(2)| ≤ · · · |r(n)|.

Key step in the formulation

Use binary and auxiliary variables to encode the relevant condition

|ri| ≤ |r(q)| or |ri| ≥ |r(q)|

for each entry i of r.
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Least quantile regression

Integer programming formulation

min
β,µ,µ̄,z,γ

γ

subject to γ ≤ |ri|+ µ̄i i = 1, . . . , n
γ ≥ |ri| − µi, i = 1, . . . , n
µ̄i ≤Mzi, i = 1, . . . , n
µi ≤M(1− zi), i = 1, . . . , n
p∑
i=1

zi = q

µi, µ̄i ≥ 0, i = 1, . . . , n
zi ∈ {0, 1}, i = 1, . . . , p.
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First-order algorithm
Bertsimas & Mazumder

Observe

|r(q)| = |y(q) − xT(q)β| = Hq(β)−Hq+1(β)

where

Hq(β) =

n∑
i=q

|y(i) − xT(i)β| = max
w

n∑
i=1

wi|yi − xTi β|

subject to

n∑
i=1

wi = q

0 ≤ wi ≤ 1, i = 1, . . . , n.

The function Hq(β) is convex.

Subgradient algorithm yields a local min to Hq(β)−Hq+1(β).
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Computational results (Bertsimas & Mazumder)

Least Median Regression

Typical Evolution of MIO
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Computational results (Bertsimas & Mazumder)
Cold vs Warm Starts

Least Median Regression

Impact of Warm-Starts

Evolution of MIO (cold-start) [top] vs (warm-start) [bottom]
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