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Last time: integer programming

Given convex function f , convex set C, J ⊆ {1, . . . n}, an integer
program is a problem of the form

min
x

f(x)

subject to x ∈ C
xj ∈ Z, j ∈ J

IPs are like twisted cousin of convex optimization. Much harder to
solve, but there is a huge literature on the topic. Key ideas:

• Lower and upper bounds

• Branch and bound method

• Cutting plane method

Application to modern statistical problems is growing, and exciting.
E.g., least median of squares regression, best subset selection
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My soap box

Recently, it’s been said that statisticians should pay more attention
to IPs. I agree

But just because we can solve a nonconvex problem by formulating
it as IP, doesn’t mean we should prefer its solution over that from
related convex program

• The lasso is not a heuristic for best subset selection

• It’s an estimator, with its own properties

• An `1 penalty shrinks coefficients (unlike `0); this can hurt or
help, depending on the situation

• Even if we could always solve best subset selection efficiently,
it would be unwise to think that we should always prefer it

Optimizers should be more aware of the bias-variance tradeoff
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We (Hastie, Tibshirani x 2) are putting together some experiments
to make this point salient. Preview:
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Outline

Today:

• Convex versus nonconvex?

• Classical nonconvex problems

• Eigen problems

• Graph problems

• Nonconvex proximal operators

• Discrete problems

• Infinite-dimensional problems

• Statistical problems

• Miscellaneous
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Beyond the tip?
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Some takeaway points

• If possible, formulate task in terms of convex optimization —
typically easier to solve, easier to analyze

• Nonconvex does not necessarily mean nonscientific! However,
statistically, it can often mean high(er) variance

• This is true both intrinsically, and because we can rarely solve
nonconvex problems (to global optimality)

• In more cases than you might expect, nonconvex problems can
be solved exactly (to global optimality)
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What does it mean for a problem to be nonconvex?

Consider a generic optimization problem:

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . r

This is a convex problem if f , gi, i = 1, . . .m are convex, and hj ,
j = 1, . . . r are affine

A nonconvex problem is one of this form, where not all conditions
are met on the functions

But trivial modifications of convex problems can lead to nonconvex
formulations ... so we really just consider nonconvex problems that
are not trivially equivalent to convex ones
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What does it mean to solve a nonconvex problem?

Nonconvex problems can have local minima, i.e., there can exist a
feasible x such that

f(y) ≥ f(x) for all feasible y such that ‖x− y‖2 ≤ R

but x is still not globally optimal. (Note: we proved that this could
not happen for convex problems)

Hence by solving a nonconvex problem, we mean finding the global
minimizer

We also implicitly mean doing it efficiently, i.e., in polynomial time
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Addendum

This is really about putting together a list of interesting problems,
that are suprisingly tractable ... so there will be exceptions about
nonconvexity and/or requiring exact global optima

(Also, I’m sure that there are many more examples out there that
I’m missing, so I invite you to give me ideas / contribute!)

10



Classical nonconvex problems
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Linear-fractional programs

A linear-fractional program is of the form

min
x

cTx+ d

eTx+ f

subject to Gx ≤ h, eTx+ f > 0

Ax = b

This is nonconvex (but quasiconvex). Provided that this problem is
feasible, it is in fact equivalent to the linear program

min
y,z

cT y + dz

subject to Gy − hz ≤ 0, z ≥ 0

Ay − bz = 0, eT y + fz = 1
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The link between the two problems is the transformation

y =
x

eTx+ f
, z =

1

eTx+ f

The proof of their equivalence is simple; e.g., see B & V Chapter 4

Linear-fractional problems show up in the study of solutions paths
for some common statistical estimation problems
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E.g., knots in the lasso path (val-
ues of λ at which coefficient be-
comes nonzero) are optimal values
of linear-fractional programs

See Taylor et al. (2013), “Infer-
ence in adaptive regression via the
Kac-Rice formula”

13



Geometric programs

A monomial is a function f : Rn++ → R of the form

f(x) = γxa11 x
a2
2 · · ·xann

for γ > 0, a1, . . . an ∈ R. A posynomial is a sum of monomials,

f(x) =

p∑

k=1

γkx
ak1
1 xak22 · · ·xaknn

A geometric program of the form

min
x

f(x)

subject to gi(x) ≤ 1, i = 1, . . .m

hj(x) = 1, j = 1, . . . r

where f , gi, i = 1, . . .m are posynomials and hj , j = 1, . . . r are
monomials. This is nonconvex
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This is equivalent to a convex problem, via a simple transformation.
Given f(x) = γxa11 x

a2
2 · · ·xann , let yi = log xi and rewrite this as

γ(ey1)a1(ey2)a2 · · · (eyn)an = ea
T y+b

for b = log γ. Also, a posynomial can be written as
∑p

k=1 e
aTk y+bk .

With this variable substitution, and after taking logs, a geometric
program is equivalent to

min
y

log

(
p0∑

k=1

ea
T
0ky+b0k

)

subject to log

(
pi∑

k=1

ea
T
iky+bik

)
≤ 0, i = 1, . . .m

cTj y + dj = 0, j = 1, . . . r

This is convex, recalling the convexity of soft max functions
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Many interesting problems are geometric programs; see Boyd et al.
(2007), “A tutorial on geometric programming”, and also Chapters
4.5 and 8.8 of B & V book. Example floor planning program:

8.8 Floor planning 439

W

H

hi

wi

(xi, yi)

Ci

Figure 8.18 Floor planning problem. Non-overlapping rectangular cells are
placed in a rectangle with width W , height H, and lower left corner at (0, 0).
The ith cell is specified by its width wi, height hi, and the coordinates of its
lower left corner, (xi, yi).

We also require that the cells do not overlap, except possibly on their boundaries:

int (Ci ∩ Cj) = ∅ for i ̸= j.

(It is also possible to require a positive minimum clearance between the cells.) The
non-overlap constraint int(Ci ∩ Cj) = ∅ holds if and only if for i ̸= j,

Ci is left of Cj , or Ci is right of Cj , or Ci is below Cj , or Ci is above Cj .

These four geometric conditions correspond to the inequalities

xi + wi ≤ xj , or xj + wj ≤ xi, or yi + hj ≤ yj , or yj + hi ≤ yi, (8.32)

at least one of which must hold for each i ̸= j. Note the combinatorial nature of
these constraints: for each pair i ̸= j, at least one of the four inequalities above
must hold.

8.8.1 Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells,
one of the four possible relative positioning conditions, i.e., left, right, above, or
below. One simple method to specify these constraints is to give two relations on
{1, . . . , N}: L (meaning ‘left of’) and B (meaning ‘below’). We then impose the
constraint that Ci is to the left of Cj if (i, j) ∈ L, and Ci is below Cj if (i, j) ∈ B.
This yields the constraints

xi + wi ≤ xj for (i, j) ∈ L, yi + hi ≤ yj for (i, j) ∈ B, (8.33)

min
W,H,
x,y,w,h

WH

subject to 0 ≤ xi ≤W, i = 1, . . . n

0 ≤ yi ≤ H, i = 1, . . . n

xi + wi ≤ xj , (i, j) ∈ L
yi + hi ≤ yj , (i, j) ∈ B
wihi = Ci, i = 1, . . . n

(Extension: Sra and Hosseini (2013), “Geometric optimization on
positive definite matrices with application to elliptically contoured
distributions”)
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Problems with two quadratic functions

Consider a problem involving two quadratics

min
x

xTA0x+ 2bT0 x+ c0

subject to xTA1x+ 2bT1 x+ c1 ≤ 0

Here A0, A1 need not be positive definite, so this is nonconvex.
The dual problem can be cast as

max
u,v

u

subject to

[
A0 + vA1 b0 + vb1

(b0 + vb1)
T c0 + vc1 − u

]
� 0, v ≥ 0

Dual is convex (as always), and strong duality holds. See Appendix
B of B & V, and also Beck and Eldar (2006), “Strong duality in
nonconvex quadratic optimization with two quadratic constraints”
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Handling convex equality constraints

Given convex f , gi, i = 1, . . .m, the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

h(x) = 0

is nonconvex when h is convex but not affine. A convex relaxation
of this problem is

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

h(x) ≤ 0

If we can ensure that h(x∗) = 0 at any solution x∗ of the above
problem, then the two are equivalent
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From B & V Exercises 4.6 and 4.58, e.g., consider the maximum
utility problem

max
x,b

T∑

t=1

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 1, . . . T

0 ≤ xt ≤ bt, t = 1, . . . T

where b0 ≥ 0 is fixed. Interpretation: xt is the amount spent of
your total available money bt at time t; concave function u gives
utility, concave function f measures investment return

This is not a convex problem, because of the equality constraint;
but can relax to

bt+1 ≤ bt + f(bt)− xt, t = 0, . . . T

without changing solution (think about throwing out money)
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Convexifying constraint sets

Given nonconvex set C, consider the nonconvex problem

min
x

cTx subject to x ∈ C

Due to linearity of objective, this is equivalent to convex problem

min
x

cTx subject to x ∈ conv(C)

Proof: let f? be optimal value in first problem, x? be solution in
second. Then x? =

∑
i aixi where xi ∈ C, ai ≥ 0, and

∑
i ai = 1.

Note f? ≥ cTx? =
∑

i aic
Txi ≥

∑
i aif

? = f?. Thus all xi must
be optimal for first problem

But note that the convex problem is not necessarily easy! Could be
very hard to even form conv(C) (recall the cutting plane method
for integer programming)
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Eigen problems
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Principal component analysis

Given a matrix X ∈ Rn×p, consider the nonconvex problem

min
R
‖X −R‖2F subject to rank(R) = k

for some fixed k. The solution here is given by the singular value
decomposition of X: if X = UDV T , then

R̂ = UkDkV
T
k ,

where Uk, Vk are the first k columns of U, V , and Dk is the first k
diagonal elements of D. I.e., R̂ is the reconstruction of X from its
first k principal components

This is often called the Eckart-Young Theorem, established in
1936, but was probably known even earlier — see Stewart (1992),
“On the early history of the singular value decomposition”
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Fantope

Another characterization of the SVD is via the following nonconvex
problem, given X ∈ Rn×p:

min
Z∈Sp

‖X −XZ‖2F subject to rank(Z) = k, Z projection

⇐⇒ max
Z∈Sp

〈XTX,Z〉 subject to rank(Z) = k, Z projection

The solution here is Ẑ = VkV
T
k , where the columns of Vk ∈ Rp×k

give the first k eigenvectors of XTX

This is equivalent to a convex problem. Express constraint set C as

C =
{
Z ∈ Sp : rank(Z) = k, Z is a projection

}

=
{
Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, . . . p, tr(Z) = k

}
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Now consider the convex hull Fk = conv(C):

Fk =
{
Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . p, tr(Z) = k

}

=
{
Z ∈ Sp : 0 � Z � I, tr(Z) = k

}

This is called the Fantope of order k. Further, the convex problem

max
Z∈Sp

〈XTX,Z〉 subject to Z ∈ Fk

admits the same solution as the original one, i.e., Ẑ = VkV
T
k

See Fan (1949), “On a theorem of Weyl conerning eigenvalues of
linear transformations”, and Overton and Womersley (1992), “On
the sum of the largest eigenvalues of a symmetric matrix”

Sparse PCA extension: Vu et al. (2013), “Fantope projection and
selection: near-optimal convex relaxation of sparse PCA”
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Classical multidimensional scaling

Let x1, . . . xn ∈ Rp, and define similarities Sij = (xi− x̄)T (xj − x̄).
For fixed k, classical multidimensional scaling or MDS solves the
nonconvex problem

min
z1,...zn

n∑

i,j=1

(
Sij − (zi − z̄)T (zj − z̄)

)2

From Hastie et al. (2009), “The elements of statistical learning”
25



Let S be the similarity matrix (entries Sij = (xi − x̄)T (xj − x̄))

The classical MDS problem has an exact solution in terms of the
eigendecomposition S = UD2UT :

ẑ1, . . . ẑn are the rows of UkDk

where Uk is the first k columns of U , and Dk the first k diagonal
entries of D

Note that other very similar forms of MDS are not convex, and not
directly solveable, e.g., least squares scaling, with dij = ‖xi− xj‖2:

min
z1,...zn

n∑

i,j=1

(
dij − ‖zi − zj‖2

)2

See Hastie et al. (2009), Chapter 14
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Generalized eigenvalue problems

Given B,W ∈ Sp++, consider the nonconvex problem

max
v

vTBv

vTWv

This is a generalized eigenvalue problem, with exact solution given
by the top eigenvector of W−1B

This is important, e.g., in Fisher’s
discriminant analysis, where B is
the between-class covariance ma-
trix, and W the within-class covari-
ance matrix

See Hastie et al. (2009), Chapter 4
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Graph problems
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Min cut

Given a graph G = (V,E) with V = {1, . . . n}, two nodes s, t ∈ V ,
and costs cij ≥ 0 on edges (i, j) ∈ E. Min cut problem:

min
b∈R|E|, x∈R|V |

∑

(i,j)∈E
bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all i, j,

xs = 0, xt = 1

Think of bij as the indicator that the edge (i, j) traverses the cut
from s to t; think of xi as an indicator that node i is grouped with
t. This nonconvex problem can be solved exactly using max flow

29



A relaxation of min cut

min
b∈R|E|, x∈R|V |

∑

(i,j)∈E
bijcij

subject to bij ≥ xi − xj for all i, j

b ≥ 0, xs = 0, xt = 1

This is an LP, and recall that it is the dual of the max flow LP:

max
f∈R|E|

∑

(s,j)∈E
fsj

subject to fij ≥ 0, fij ≤ cij for all (i, j) ∈ E
∑

(i,k)∈E
fik =

∑

(k,j)∈E
fkj for all k ∈ V \ {s, t}

Max flow min cut theorem tells us that the relaxed min cut is tight
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Max cut

Given an undirected graph G = (V,E) with V = {1, . . . n}, edge
costs cij ≥ 0, (i, j) ∈ E. Max cut problem:

min
v1,...,vn∈R

∑

(i,j)∈E
cij

(1− vivj)
2

subject to v2i = 1, i = 1, . . . n

Nonconvex, NP hard! SDP relaxation of Goemans and Williamson
(1994), “Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming”:

min
v1,...,vn∈Rn

∑

(i,j)∈E
cij

(1− vTi vj)
2

subject to ‖vi‖22 = 1, i = 1, . . . n

Remarkable fact: with randomized rounding, E[f?SDP] ≥ 0.878f?OPT
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Nonconvex proximal operators
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Hard-thresholding

One of the simplest nonconvex problems, given y ∈ Rn:

min
β

n∑

i=1

(yi − βi)2 +

n∑

i=1

λi · 1{βi 6= 0}

Solution is given by hard-thresholding y,

βi =

{
yi if y2i > λi

0 otherwise
, i = 1, . . . n

and can be seen by inspection. Special case of λi = λ, i = 1, . . . n:

min
β
‖y − β‖22 + λ‖β‖0

Compare to soft-thresholding, proximal operator for `1 norm. Also,
note: changing the loss to ‖y −Xβ‖22 gives best subset selection,
which is NP hard for general matrix X
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Potts minimization

Consider 1d segmentation problem, also called Potts minimization:

min
β

n∑

i=1

(yi − βi)2 + λ

n−1∑

i=1

1{βi 6= βi+1}

Nonconvex, but solveable by dynamic programming, in two ways:
Bellman (1961), “On the approximation of curves by line segments
using dynamic programming”, and Johnson (2013) “A dynamic
programming algorithm for the fused lasso and L0-segmentation”

Johnson: more efficient, Bellman:
more general

Worst-case O(n2), but with prac-
tical performance more like O(n)
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Tree-leaves projection

Given target u ∈ Rn, tree g on Rn, and label y ∈ {0, 1}, consider

min
z
‖u− z‖22 + λ · 1{g(z) 6= y}

Interpretation: find z close to u, whose label under g is not unlike
y. Argue directly that solution is either ẑ = u or ẑ = PS(u), where

S = g−1(1) = {z : g(z) = y}

the set of leaves of g assigned label y. We simply compute both
options for ẑ and compare costs. Therefore problem reduces to
computing PS(y), the projection onto a set of tree leaves, a highly
nonconvex set

(Subroutine of broader algorithm for nonconvex optimization; see
Carreira-Perpinan and Wang (2012), “Distributed optimization of
deeply nested systems”)
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The set S is a union of axis-aligned boxes; projection onto any one
box is fast, O(n) operations
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To project onto S, could just scan
through all boxes, and take the
closest

Faster: decorate each node of
tree with labels of its leaves, and
bounding box. Perform depth-
first search, pruning nodes:

• that do not contain a leaf
labeled y, or

• whose bounding box is
farther away than the
current closest box
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Discrete problems
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Binary graph segmentation

Given y ∈ Rn, undirected graph G = (V,E) with V = {1, . . . n},
consider binary graph segmentation:

min
β∈{0,1}n

n∑

i=1

(yi − βi)2 +
∑

(i,j)∈E
λij · 1{βi 6= βj}

Nonconvex, but simple manipulation delivers the equivalent form

max
A⊆{1,...n}

∑

i∈A
ai +

∑

j∈Ac
bj −

∑

(i,j)∈E, |A∩{i,j}|=1

λij

which is a segmentation problem that can be solved exactly using
min cut/max flow. E.g., Kleinberg and Tardos (2005), “Algorithm
design”, Chapter 7
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Can apply recursively to get
a verison of graph hierarchical
clustering (divisive)

E.g., take the graph as a 2d
grid for image segmentation
(From http://ailab.snu.

ac.kr)

40
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Discrete Potts minimization

Given y ∈ Rn, now consider discrete Potts minimization:

min
β∈{b1,...bk}n

n∑

i=1

(yi − βi)2 + λ

n−1∑

i=1

1{βi 6= βi+1}

where {b1, . . . bk} is some fixed discrete set. This is nonconvex and
can be efficiently solved using classical dynamic programming

Key insight is that the 1-dimensional structure allows us to exactly
solve and store

β̂1(β2) = argmin
β1∈{b1,...bk}

(y1 − β1)2 + λ · 1{β1 6= β2}︸ ︷︷ ︸
f1(β1,β2)

β̂2(β3) = argmin
β2∈{b1,...bk}

f1
(
β̂1(β2), β2

)
+ (y2 − β2)2 + λ · 1{β2 6= β3}

. . .

41



DP agorithm:

• Make a forward pass over
β1, . . . βn−1, keeping a
look-up table; also keep a
look-up table for the optimal
partial criterion values
f1, . . . fn−1

• Solve exactly for βn

• Make a backward pass
βn−1, . . . β1, reading off the
look-up table

b1 b2 . . . bk
β1
β2
. . .
βn−1

b1 b2 . . . bk
f1
f2
. . .
fn−1

Requires O(nk2) operations
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Nearly optimal K-means

Given data points x1, . . . xn ∈ Rp, the K-means problem is

min
c1,...cK

n∑

i=1

min
k=1,...K

‖xi − ck‖22
︸ ︷︷ ︸

f(c1,...cK)

This is nonconvex, NP hard, and it is usually approximately solved
using Lloyd’s algorithm, run many times, with random starts

Careful choice of starting positions makes a big impact: if we run
Lloyd’s algorithm once, starting at c1 = s1, . . . cK = sK , for special
(random) s1, . . . sK , then we get estimates ĉ1, . . . ĉK with

E
[
f(ĉ1, . . . ĉK)

]
≤ 8(log k + 2) · min

c1,...cK∈Rp
f(c1, . . . cK)
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See Arthur and Vassilvitskii (2007), “k-means++: The advantages
of careful seeding”. Their construction of s1, . . . sK is simple:

• Begin by choosing s1 uniformly at random among x1, . . . xn

• Compute squared distances

d2i = ‖xi − s1‖22

for all points i not chosen, and choose s2 by drawing from the
remaining points, with probability weights d2i /

∑
j d

2
j

• Recompute the squared distances as

d2i = min
{
‖xi − s1‖22, ‖xi − s2‖22

}

and choose s3 according to the same recipe

• And so on, until all of s1, . . . sK are chosen
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Infinite-dimensional problems
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Smoothing splines

Given pairs (xi, yi) ∈ R× R, i = 1, . . . n, smoothing spline solves

min
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ (
f ′′(t)

)2
dt

Optimization domain: all functions f such that
∫

(f ′′(t))2 dt <∞,
infinite-dimensional set

Can show that the solution f̂ to the above problem is unique, and
given by natural cubic spline, that has knots at x1, . . . xn. (Proof:
use integration by parts.) Hence we can parametrize by

f =

n∑

j=1

θjηj

where η1, . . . ηn are natural cubic spline basis functions. Task now
is to solve for coefficients θ ∈ Rn
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Plugging in f =
∑n

j=1 θjηj , transform smoothing spline problem
into finite-dimensional form:

min
θ
‖y −Nθ‖22 + λθTΩθ

where Nij = ηj(xi), and Ωij =
∫
η′′i (t) η′′j (t) dt. The solution is

explicitly given by

θ̂ = (NTN + λΩ)−1NT y

and fitted function is f̂ =
∑n

j=1 θ̂jηj . With proper choice of basis

function (B-splines), calculation of θ̂ is O(n)

See Wahba (1990), “Splines models for observational data”; Green
and Silverman (1994), “Nonparametric regression and generalized
linear models”; Hastie et al. (2009), Chapter 5
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Locally adaptive regression splines

Given same setup, (cubic) locally adaptive regression spline solves

min
f

n∑

i=1

(
yi − f(xi)

)2
+ λ · TV(f ′′′)

Optimization domain: all functions f with TV(f ′′′) <∞, which is
again infinite-dimensional

Similar to before, can show that the solution f̂ to above problem is
a cubic spline, but two key differences:

• Can have any number of knots ≤ n− 4 (tuned by λ)

• Knots do not necessarily lie at input points x1, . . . xn!

Details in Mammen and van de Geer (1997), “Locally adaptive
regression splines”. Summary: these are statistically more adaptive
but computationally more challenging than smoothing splines
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Smoothing spline Locally adaptive spline
(easier to compute) (more adaptive)

Finite-dimensional approximation is given in Mammen and van de
Geer (1997), and a much faster approximation in Tibshirani (2014),
“Adaptive piecewise polynomial estimation via trend filtering”
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Reproducing kernel Hilbert spaces

Let κ : Rd × Rd → R++ be a positive definite kernel, and Hκ the
function space generated by (possibly infinite) linear combinations
of functions κ(·, z), z ∈ Rd. This is a reproducing kernel Hilbert
space or RKHS, and is equipped with a norm ‖ · ‖Hκ

Given data (xi, yi) ∈ Rd × R, i = 1, . . . n, consider the problem

min
f∈Hκ

n∑

i=1

(
yi − f(xi)

)2
+ λ‖f‖2Hκ

This is infinite-dimensional, but by Mercer’s Theorem, the solution
satisfies f =

∑n
j=1 αjK(·, xj). Letting K ∈ Rn×n have elements

Kij = κ(xi, xj), our problem reduces to

min
α
‖y −Kα‖22 + λαTKα

(Beyond regression: same trick for kernel SVMs, kernel PCA, etc.)
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Statistical problems
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Sparse underdetermined linear systems

Suppose that X ∈ Rn×p has unit normed columns, ‖Xi‖2 = 1, for
i = 1, . . . n. Given y ∈ Rn, consider the problem of finding sparsest
solution to linear system

min
β
‖β‖0 subject to Xβ = y

This is nonconvex and known to be NP hard, for a generic X. A
natural convex relaxation is the `1 basis pursuit problem:

min
β
‖β‖1 subject to Xβ = y

It turns out that there is a deep connection between the two; we
cite results from Donoho (2006), “For most large underdetermined
systems of linear equations, the minimal `1 norm solution is also
the sparsest solution”
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As n, p grow large, p > n, there exists a threshold ρ (depending on
the ratio p/n), such that for most matrices X, the following holds.
If we solve the `1 problem and find a solution with:

• fewer than ρn nonzero components, then we must have found
the unique solution of the `0 problem

• greater than ρn nonzero components, then there is no solution
of the linear system with less than ρn nonzero components

Here “most” can be quantified precisely via a uniform probability
measure over matrices X with unit norm columns

There is a large and fast-moving body of related literature. See
Donoho et al. (2009), “Message-passing algorithms for compressed
sensing” for a nice review
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Exact low-rank matrix completion

Given a matrix Y ∈ Rn×n, partially observed, over a set of indices
Ω ⊆ {1, . . . , n}2. Consider the problem of finding the lowest-rank
matrix matching Y on the observed set

min
B

rank(B) subject to Bij = Yij , (i, j) ∈ Ω

This is nonconvex. Natural convex relaxation:

min
B
‖B‖tr subject to Bij = Yij , (i, j) ∈ Ω

Under some assumptions, it can be shown that the solution to the
convex problem is exactly equal to the solution to the nonconvex
problem, with high probability over the sampling model

See, e.g., Candes and Recht (2008), “Exact matrix completion via
convex optimization”, and many papers since
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Miscellaneous
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Curvature domination

Given convex f and nonconvex g, consider a problem

min
x

f(x) + g(x)

For convex h, we can always rewrite this problem as

min
x

f(x) + g(x)− h(x)︸ ︷︷ ︸
F (x)

+ h(x)

Sometimes, can choose h to make F smooth and strictly convex!
How? Prove that ∇2f(x) � ∇2(h− g)(x) for all x

This is apparently an old idea. See Parekh and Selesnick (2015),
“Convex fused lasso denoising with non-convex regularization and
its use for pulse detection” and references therein. (Related ideas
on curvature domination from statistics: Zhang, Loh, Wainwright)
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Setting of Parekh and Selesnick (2015) (simplified):

min
β

1

2
‖y − β‖22 + λ

n−1∑

i=1

φa(βi − βi+1)

where φa(x) = 1
a log(1 + a|x|), for a > 0. This uses a nonconvex

segmentation penalty — whole problem appears to be nonconvex

−4 −2 0 2 4

−
1

0
1

2
3

Fact: sa(x) = φa(x) − |x|
is twice differentiable, strictly
concave, with −a ≤ s′′a(x) ≤ 0
for all x
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Rewrite problem (denoting by D the first difference operator) as

min
β

1

2
‖y − β‖22 + λ

n−1∑

i=1

(
φa([Dβ]i)− |[Dβ]i|

)

︸ ︷︷ ︸
Fa(β)

+λ‖Dβ‖1

Now compute

∇2Fa(β) = I + λDTSa(Dβ)D

where Sa(x) = diag(s′′a(x1), . . . s
′′
a(xn−1)). Easy to check that

DTSa(Dβ)D � −aDTD � −4a

using our previous fact, and λmax(DTD) = 4. Thus Fa(β) — and
our whole problem — is strictly convex provided 1− 4aλ > 0, i.e.,
a < 1/(4λ)
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From Parekh and Selesnick (2015): contour plots of criterion
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(a) G(x),a0 = 1/2,a1 = 1/8 (b) G(x),a0 = 1/2,a1 = 1/3

Fig. 1. Surface plots illustrating the convexity condition. (a) The function
G(x) (15) is convex for a0 = 1/2 and a1 = 1/8. (b) The function G(x) is
not convex for a0 = 1/2 and a1 = 1/3 (these values violate Theorem 1).

For the strict convexity of G, we need to ensure that ∇2G is
positive definite. To this end, from the assumptions on φ, it
follows that

Γ(x; a0) ! −a0I, x ∈ RN . (18)

Moreover, we can write

DT Γ(Dx; a1)D ! −a1D
T D (19)

≻ −4a1I. (20)

The inequality (20) is obtained using the eigenvalues1 of the
matrix DT D. Using (16), (18) and (20), ∇2G ≻ 0 if

(1 − a0λ0 − 4a1λ1)I ! 0, (21)

or equivalently if,

1 − a0λ0 − 4a1λ1 " 0. (22)

From (11), (13) and (15) it is straighforward that

F (x) = G(x) + λ0∥x∥1 + λ1∥Dx∥1. (23)

Hence, F in (13) is strictly convex as long as the inequality
(22) holds true (the function F is a sum of a strictly convex
function G, the convex ℓ1 norm, and the convex TV penalty).

The following example illustrates the convexity condition
(22) for N = 2. Let λ0 = λ1 = 1 and y = 0. As per Theorem
1, the function G (by extension the function F ) is strictly
convex if a0 + 4a1 # 1. Figure 1(a) shows the function G
with the values a0 = 1/2 and a1 = 1/8. These values satisfy
Theorem 1 and as a result the function G is strictly convex.
On the other hand, Fig. 1(b) shows the function G when a0 =
1/2 and a1 = 1/3. These values of a0 and a1 violate the
Theorem 1; consequently the functionG is non-convex as seen
in Fig. 1(b).
The convexity condition given by Theorem 1 in (14) implies

that the values of a0 and a1 must lie on or below the line given
by a0λ1 + 4a1λ1 = 1. Figure 2 displays the values of a0 and
a1 for which the function F is strictly convex. In order to
maximally induce sparsity, we choose the values of a0 and
a1 on the line. Specifically, we propose to select a value of

1The eigenvalues of DT D are given by {2 − 2 cos(kπ/N)} for k =
0, . . . , N − 1 [30].

a0

a 1

Convex

Non−Convex

0 1/λ0
0

1/(4λ1)

Fig. 2. Region of convexity for the function F in (13). The function F is
strictly convex for any values of a0 and a1 inside the triangular region.

a0 ∈ (0, 1/λ) and set the value of a1 as

a1 =
1 − a0λ0

4λ1
. (24)

IV. OPTIMIZATION ALGORITHM

Due to Theorem 1, we can reliably obtain via convex
optimization the global minimum of (4) as long as the pa-
rameters a0 and a1 are chosen to satisfy (14). We derive an
algorithm for the proposed CNC fused lasso method using the
majorization-minimization (MM) procedure [8], such that

xk+1 = arg min
x

FM(x, xk), (25)

where FM denotes a majorizer of the function F in (4), and
where k is the iteration index. The MM procedure guarantees
that each iteration monotonically decreases the value of the
objective function F in (4). We use the absolute value function
and a linear function to majorize the non-convex penalty
function. With this particular choice of majorizer, each MM
update iteration involves solving the ℓ1 FLSA problem (2).
To derive a majorizer of the function φ, note that φ(x; a) =

s(x; a)+ |x|. As a result, it suffices to majorize the function s
with a linear term in order to obtain a majorizer of the function
φ. Observe that since s is a concave function, the tangent line
to s at a point v always lies above the function s. Using the
tangent line to the function s, a majorizer of the function φ is
given by φM : R × R → R, defined as

φM(x, v; a) = |x| + s′(v; a)(x − v) + s(v; a), (26)

for x, v ∈ R. It follows straightforwardly that

φM(x, v; a) " φ(x; a), ∀x, v ∈ R, (27)
φM(v, v; a) = φ(v; a), ∀v ∈ R. (28)

Figure 3(a) shows the absolute value function |x|. The
twice continuously differentiable function s(x; a) is shown in
Fig. 3(b), along with the tangent line to s(x; a) at x = 1.
Figure 3(c) shows the non-convex penalty function φ and its
majorizer φM(x, v; s) given by (26). The majorizer is the sum
of the absolute value function in Fig. 3(a) and the tangent line
to s(x; a) in Fig. 3(b).
Using (27) and (28), we note that

∑

n

φM
(
xn, vn; a

)
"
∑

n

φ
(
xn; a

)
, (29)

a small enough a too large
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Gradient descent converges to minimizers

Given f twice continuously differentiable, dom(f) = Rn, and initial
point x(0) ∈ Rn. Our old friend gradient descent, repeats:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

When f has Lipschitz gradient, constant L > 0, but is nonconvex,
can anything be said?

A very old problem. Remarkable new result from Lee et al. (2016),
“Gradient descent red converges to minimizers”: if step sizes are
small enough tk ≤ 1/L, k = 1, 2, 3, . . ., and x(0) is drawn from any
density over Rn, then saddle points are unlikely limit points, i.e.,

P
(

lim
k→∞

x(k) = x̃
)

= 0, for any isolated strict saddle point x̃ of f

Panageas and Piliouras (2016) have already relaxed isolated saddle
point and global Lipschitz conditions
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