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Last time: duality revisited
Consider the problem

min
x

f(x)

subject to Ax = b
h(x) ≤ 0

Lagrangian

L(x, u, v) = f(x) + uTh(x) + vT(Ax− b)

We can rewrite the primal problem as

min
x

max
u,v
u≥0

L(x, u, v)

Dual problem
max
u,v
u≥0

min
x

L(x, u, v)
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Optimality conditions

Assume f, h1, . . . , hm are convex and differentiable. Assume also
that strong duality holds.

KKT optimality conditions for primal and dual

∇f(x) +∇h(x)u+ATv = 0

Uh(x) = 0

Ax = b

u,−h(x) ≥ 0.

Here U = Diag(u), ∇h(x) =
[
∇h1(x) · · · ∇hm(x)

]
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Central path equations
Barrier problem

min
x

f(x) + τφ(x)

Ax = b

where

φ(x) = −
m∑

i=1

log(−hi(x)).

Optimality conditions for barrier problem (and its dual)

∇f(x) +∇h(x)u+ATv = 0

Uh(x) = −τ1

Ax = b

u,−h(x) > 0.

Useful fact: solution (x(τ), u(τ), v(τ)) has duality gap

f(x(τ))−min
x
L(x, u(τ), v(τ)) = mτ.
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Outline

Today:

• Primal-dual interior-point method

• Special case: linear programming

• Extension to semidefinite programming
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Barrier method versus primal-dual method

Like the barrier method, primal-dual interior-point methods aim to
compute (approximately) points on the central path.

Main differences between primal-dual and barrier methods:

• Primal-dual interior-point methods usually take one Newton
step per iteration (no additional loop for the centering step).

• Primal-dual interior-point methods are not necessarily feasible.

• Primal-dual interior-point methods are typically more efficient.
Under suitable conditions they have better than linear
convergence.
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Central path equations and Newton step
Central path equations:

∇f(x) +∇h(x)u+ATv = 0

Uh(x) + τ1 = 0

Ax− b = 0

u,−h(x) > 0.

Newton step:


∇2f(x) +

∑
i ui∇2hi(x) ∇h(x) AT

U∇h(x)T H(x) 0
A 0 0






∆x
∆u
∆v


 = −r(x, u, v)

where

r(x, u, v) :=



∇f(x) +∇h(x)u+ATv

Uh(x) + τ1
Ax− b


 , H(x) = Diag(h(x))
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Surrogate duality gap, residuals
Define the dual, central, and primal residuals at current (x, u, v) as

rdual = ∇f(x) +∇h(x)u+ATv

rcent = Uh(x) + τ1

rprim = Ax− b

Given x, u with h(x) ≤ 0, u ≥ 0, the surrogate duality gap is

−h(x)Tu

This is a true duality gap when rdual = 0 and rprim = 0.

Observe that (x, u, v) is on the central path if and only if
u > 0, h(x) < 0 and

r(x, u, v) = 0 for τ = −h(x)Tu

m
.
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Given x, u such that h(x) ≤ 0, u ≥ 0, define τ(x, u) := −h(x)Tu
m .

Primal-Dual Algorithm

1. Choose σ ∈ (0, 1)

2. Choose (x0, u0, v0) such that h(x0) < 0, u0 > 0

3. For k = 0, 1, . . .
I Compute Newton step for

(x, u, v) = (xk, uk, vk), τ := στ(xk, uk)

I Choose steplength θk and set

(xk+1, uk+1, vk+1) := (xk, uk, vk) + θk(∆x,∆u,∆v)

—————————–
Parallel notation in the barrier method:

τ =
1

t
, σ =

1

µ
.
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Backtracking line search
At each step, we need to find θ and set

x+ = x+ θ∆x, u+ = u+ θ∆u, v+ = v + θ∆v.

Two main goals:

• Maintain h(x) < 0, u > 0

• Reduce ‖r(x, u, v)‖

Use a multi-stage backtracking line search for this purpose: start
with largest step size θmax ≤ 1 that makes u+ θ∆u ≥ 0:

θmax = min
{

1, min{−ui/∆ui : ∆ui < 0}
}

Then, with parameters α, β ∈ (0, 1), we set θ = 0.99θmax, and

• Update θ = βθ, until hi(x
+) < 0, i = 1, . . .m

• Update θ = βθ, until ‖r(x+, u+, v+)‖ ≤ (1− αθ)‖r(x, u, v)‖
10



Special case: linear programming

Consider

min
x

cTx

subject to Ax = b

x ≥ 0

for c ∈ Rn, A ∈ Rm×n, b ∈ Rm.

Dual:

max
y,s

bTy

subject to ATy + s = c

s ≥ 0
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Some history

• Dantzig (1940s): the simplex method, still today is one of the
most well-known/well-studied algorithms for LPs

• Klee and Minty (1972): pathological LP with n variables and
2n constraints, simplex method takes 2n iterations to solve

• Khachiyan (1979): polynomial-time algorithm for LPs, based
on ellipsoid method of Nemirovski and Yudin (1976). Strong
in theory, weak in practice

• Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)

• Renegar (1988): Newton-based interior-point algorithm for
LP. Best known theoretical complexity until very recent work
by Lee-Sidford.

• Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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Optimality conditions and central path equations

Optimality conditions for previous primal-dual pair of linear
programs

ATy + s = c

Ax = b

XS1 = 0

x, s ≥ 0

Central path equations

ATy + s = c

Ax = b

XS1 = τ1

x, s > 0
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Primal-dual method versus barrier method

Newton equations for primal-dual method




0 AT I
A 0 0
S 0 X






∆x
∆y
∆s


 = −



ATy + s− c
Ax− b

XS1− τ1




Simple observation:

XS1 = τ1⇔ s = τX−11⇔ x = τS−11.

Hence can eliminate either s or x to get optimality conditions for
either primal or dual barrier problems.
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Newton steps for barrier problems

Primal and dual central path equations

ATy + τX−11 = c
Ax = b
x > 0

ATy + s = c
τAS−11 = b

s > 0

Primal Newton step

[
τX−2 AT

A 0

] [
∆x
∆y

]
= −

[
ATy + τX−11− c

Ax− b

]

Dual Newton step

[
AT I
0 τAS−2

] [
∆y
∆s

]
= −

[
ATy + s− c
τAS−11− b

]
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50
variables and m = 100 equality constraints

Barrier method uses various values of µ, primal-dual method uses
µ = 10. Both use α = 0.01, β = 0.5
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Figure 11.21 Progress of the primal-dual interior-point method for an LP,
showing surrogate duality gap η̂ and the norm of the primal and dual resid-
uals, versus iteration number. The residual converges rapidly to zero within
24 iterations; the surrogate gap also converges to a very small number in
about 28 iterations. The primal-dual interior-point method converges faster
than the barrier method, especially if high accuracy is required.
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Figure 11.22 Progress of primal-dual interior-point method for a GP, show-
ing surrogate duality gap η̂ and the norm of the primal and dual residuals
versus iteration number.
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Figure 11.21 Progress of the primal-dual interior-point method for an LP,
showing surrogate duality gap η̂ and the norm of the primal and dual resid-
uals, versus iteration number. The residual converges rapidly to zero within
24 iterations; the surrogate gap also converges to a very small number in
about 28 iterations. The primal-dual interior-point method converges faster
than the barrier method, especially if high accuracy is required.
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Figure 11.22 Progress of primal-dual interior-point method for a GP, show-
ing surrogate duality gap η̂ and the norm of the primal and dual residuals
versus iteration number.

Barrier duality gap Primal-dual surrogate
duality gap

Primal-dual feasibility
gap, rfeas =

(‖rprim‖22 + ‖rdual‖22)1/2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses µ = 100, runs just two outer loops (decreases duality
gap by 104); primal-dual method uses µ = 10, stops when duality
gap and feasibility gap are at most 10−8
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

11.8 Implementation 615
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Figure 11.23 Number of iterations required to solve randomly generated
standard LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for 100 instances of each dimen-
sion. The growth in the number of iterations required, as the problem di-
mensions range over a 100:1 ratio, is approximately logarithmic.

A family of LPs

Here we examine the performance of the primal-dual method as a function of
the problem dimensions, for the same family of standard form LPs considered
in §11.3.2. We use the primal-dual interior-point method to solve the same 2000
instances, which consist of 100 instances for each value of m. The primal-dual
algorithm is started at x(0) = 1, λ(0) = 1, ν(0) = 0, and terminated using tolerance
ϵ = 10−8. Figure 11.23 shows the average, and standard deviation, of the number
of iterations required versus m. The number of iterations ranges from 15 to 35,
and grows approximately as the logarithm of m. Comparing with the results for
the barrier method shown in figure 11.8, we see that the number of iterations in
the primal-dual method is only slightly higher, despite the fact that we start at
infeasible starting points, and solve the problem to a much higher accuracy.

11.8 Implementation

The main effort in the barrier method is computing the Newton step for the cen-
tering problem, which consists of solving sets of linear equations of the form

[
H AT

A 0

] [
∆xnt

νnt

]
= −

[
g
0

]
, (11.60)

where

H = t∇2f0(x) +

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑

i=1

1

−fi(x)
∇2fi(x)

Barrier method Primal-dual method

Primal-dual method require only slightly more iterations, despite
the fact that they it is producing higher accuracy solutions

17



Interior-point methods for semidefinite programming
Primal

min
X

C •X
subject to Ai •X = bi, i = 1, . . . ,m

X � 0.

Dual
max
y

bTy

subject to

m∑

i=1

yiAi + S = C

S � 0.

Recall trace inner product in Sn

X • S = trace(XS).

Strong duality holds and primal and dual attained if both are
strictly feasible.
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Optimality conditions for semidefinite programming
Primal and dual problems

min
X

C •X
subject to A(X) = b

X � 0

max
y,S

bTy

subject to A∗(y) + S = C
S � 0

Here A : Sn → Rm linear map.

Assume also that strong duality holds. Then X? and (y?, S?) are
respectively primal and dual optimal solutions if and only if
(X?, y?, S?) solves

A∗(y) + S = C

A(X) = b

XS = 0

X,S � 0.
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Central path for semidefinite programming
Primal barrier problem

min
X

C •X − τ log(det(X))

subject to A(X) = b

Dual barrier problem

max
y,S

bTy + τ log(det(S))

subject to A∗(y) + S = C

Optimality conditions for both

A∗(y) + S = C

A(X) = b

XS = τI

X, S � 0.
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Newton step

Primal central path equations

A∗(y) + τX−1 = C
A(X) = b

X � 0

Newton equations

τX−1∆XX−1 +A∗(∆y) = −(A∗(y) + τX−1 − C)
A(∆X) = −(A(X)− b)

Similar dual central path and Newton equations involving (y, S).
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Primal-dual Newton step

Recall central path equations



A∗(y) + S − C
A(X)− b
XS


 =




0
0
τI


 , X, S � 0.

“Natural” Newton step:




0 A∗ I
A 0 0
S 0 X






∆X
∆y
∆S


 = −



A∗(y) + S − C
A(X)− b
XS − τI


 .

But we run into issues of symmetry...
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Nesterov-Todd direction

We want to linearize
XS − τI = 0.

Primal linearization:

S − τX−1 = 0 τX−1∆XX−1 + ∆S = τX−1 − S.

Dual linearization:

X − τS−1 = 0 ∆X + τS−1∆SS−1 = τS−1 −X.
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Nesterov-Todd direction

Proper primal-dual linearization: average of previous two

W−1∆XW−1 + ∆S = τX−1 − S

or equivalently

∆X +W∆SW = τS−1 −X

provided
WSW = X.

Achieve the above by taking W as the geometric mean of X,S:

W = S−1/2(S1/2XS1/2)1/2S−1/2

= X1/2(X1/2SX1/2)−1/2X1/2
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Given X,S � 0, define τ(X,S) := X•S
n .

Primal-Dual Algorithm for Semidefinite Programming

1. Choose σ ∈ (0, 1)

2. Choose (X0, y0, S0) such that X0, S0 � 0

3. For k = 0, 1, . . .
I Compute Nesterov-Todd direction for

(X, y, S) = (Xk, yk, Sk), τ := στ(Xk, Sk)

I Choose steplength θk and set

(Xk+1, yk+1, Sk+1) := (Xk, yk, Sk) + θk(∆X,∆y,∆S)
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