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Last time: duality revisited
Consider the problem

min  f(x)
subject to Ax =b
h(z) <0

Lagrangian

L(z,u,v) = f(z) +u' h(z) + v (Az — b)
We can rewrite the primal problem as

min max L(z,u,v)
u>0

Dual problem
max min L(z,u,v)
u,v T
u>0



Optimality conditions

Assume f, hi,...,h,, are convex and differentiable. Assume also
that strong duality holds.

KKT optimality conditions for primal and dual

Vf(z)+ Vh(z)u+ ATv =0

Uh(z) = 0
Az =b
u, —h(z) > 0.

Here U = Diag(u), Vh(z) = [Vhi(z) -+ Vhp(z)]



Central path equations
Barrier problem
min  f(z) + 7¢(z)
Arz =b

where

b(z) = = log(—hy(x)).
=1

Optimality conditions for barrier problem (and its dual)

Vf(z)+ Vh(z)u+ ATv =0

Uh(x) = —711
Az =10
u, —h(z) > 0.

Useful fact: solution (x(7),u(7),v(7)) has duality gap

flx(r)) — H}Tin L(z,u(r),v(1)) = mr.



Outline

Today:
e Primal-dual interior-point method
e Special case: linear programming

e Extension to semidefinite programming



Barrier method versus primal-dual method

Like the barrier method, primal-dual interior-point methods aim to
compute (approximately) points on the central path.

Main differences between primal-dual and barrier methods:
e Primal-dual interior-point methods usually take one Newton
step per iteration (no additional loop for the centering step).
e Primal-dual interior-point methods are not necessarily feasible.
e Primal-dual interior-point methods are typically more efficient.
Under suitable conditions they have better than linear
convergence.



Central path equations and Newton step
Central path equations:

Vf(z)+ Vh(z)u+ ATv =0

Uh(z)+711=0
Az —b=0
u, —h(z) > 0.

Newton step:

V2f(z)+ >, u;V2hi(z) Vh(z) AT [Az
UVh(z)T H(z) 0 Au| = —r(x,u,v)
A 0 0 Av
where
Vf(x)+ Vh(z)u+ Ao
r(x,u,v) = Uh/i:x) —|—le ] , H(x) = Diag(h(z))




Surrogate duality gap, residuals
Define the dual, central, and primal residuals at current (z,u,v) as

Tdual = V() + Vh(z)u + ATv
Teent = Uh(x) + 71

Tprim = Az — b
Given x,u with h(z) < 0, u > 0, the surrogate duality gap is
—h(z)Tu
This is a true duality gap when rqua = 0 and 7prim = 0.

Observe that (x,u,v) is on the central path if and only if
u>0,h(z) <0 and

h(z) u

r(z,u,v) =0 for 7= —



Given z,u such that h(z) <0, u > 0, define 7(x,u) := —%.
Primal-Dual Algorithm
1. Choose ¢ € (0,1)

2. Choose (20, u% 1Y) such that h(2°) <0, u® >0
3. For k=0,1,...

» Compute Newton step for
(@, u,0) = (a8, 0¥, 0F), 7= o7(a*, u)
» Choose steplength 6}, and set

(2R uF L R L) = (2R R oR) 4 B (A, Au, Av)

Parallel notation in the barrier method:

1 1

T = — g = —

t’ w



Backtracking line search
At each step, we need to find 8 and set

=2 +0Az, vt =u+0Au, v =v+0Av.

Two main goals:
e Maintain h(x) <0, u >0

e Reduce ||r(x,u,v)||

Use a multi-stage backtracking line search for this purpose: start
with largest step size Onax < 1 that makes u + 0Au > 0:

Omax = min {1, min{—u;/Au; : Au; < 0}}

Then, with parameters o, 8 € (0, 1), we set 6 = 0.990,,ax, and
e Update 6 = 36, until h;(z7) <0,i=1,...m
e Update 6 = 36, until ||r(zt,ut,v)| < (1 — ab)||r(z,u,v)|
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Special case: linear programming

Consider

min '

xT

subject to Az =10
x>0

forc e R", A € R™*" b e R™.

Dual:
max by
y?s

subject to ATy +s=c
s>0
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Some history

Dantzig (1940s): the simplex method, still today is one of the
most well-known /well-studied algorithms for LPs

Klee and Minty (1972): pathological LP with n variables and
2n constraints, simplex method takes 2" iterations to solve
Khachiyan (1979): polynomial-time algorithm for LPs, based
on ellipsoid method of Nemirovski and Yudin (1976). Strong
in theory, weak in practice

Karmarkar (1984): interior-point polynomial-time method for
LPs. Fairly efficient (US Patent 4,744,026, expired in 2006)
Renegar (1988): Newton-based interior-point algorithm for
LP. Best known theoretical complexity until very recent work
by Lee-Sidford.

Modern state-of-the-art LP solvers typically use both simplex
and interior-point methods
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Optimality conditions and central path equations

Optimality conditions for previous primal-dual pair of linear
programs

Aly+s=c
Ax =b
XS1=0
z,s >0

Central path equations

ATy+s=c

Axr=b
XS1=1711

z,8>0
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Primal-dual method versus barrier method

Newton equations for primal-dual method

0 AT 17 [Ax ATy +s—c¢
A 0 0f |Ay| =- Az —b
S 0 X| |As XS51-11

Simple observation:
XSl=rles=rX11ez=75""1

Hence can eliminate either s or x to get optimality conditions for
either primal or dual barrier problems.



Newton steps for barrier problems

Primal and dual central path equations

ATy+7X 1 =¢ ATy+s=c
Az =D TAS 11 =b
z>0 s>0

Primal Newton step

X2 AT [Az _ ATy4+7X711 —¢
A 0| |Ay| Az —b

Dual Newton step

AT I Ayl [ATy+s—c
0 TAS2| |As| TAS™11 -
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Example: barrier versus primal-dual

Example from B & V 11.3.2 and 11.7.4: standard LP with n = 50
variables and m = 100 equality constraints

Barrier method uses various values of i, primal-dual method uses
u=10. Both use o =0.01, 5=10.5

10% 10
10% 0
1 10°
R 10" 10-2
; 10 =101 j_ 10~
s 1074 10 10"
: 1078
109 =50 =150 =2 114 10-1
0 20 10 60 80 5 10 15 20 25 5 10 15 20 25 30
Newton iterations iteration number iteration number
Barrier duality gap ~ Primal-dual surrogate Primal-dual feasibility
duality gap £ap, Tfeas =

(Ipriml|3 + llraual|3) /2

Can see that primal-dual is faster to converge to high accuracy
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Now a sequence of problems with n = 2m, and n growing. Barrier
method uses p = 100, runs just two outer loops (decreases duality
gap by 104); primal-dual method uses 1+ = 10, stops when duality

gap and feasibility gap are at most 10~®

35 50

40

30

Newton iterations
iterations

20

5 1
1510l 10? 10° D101 102 10
m m

Barrier method Primal-dual method

Primal-dual method require only slightly more iterations, despite
the fact that they it is producing higher accuracy solutions



Interior-point methods for semidefinite programming

Primal
min CeX
X

subject to A; e X =b;, i=1,....,m
X =0.

Dual

max bTy
y

subject to ZyiAi +5=C

=1
S = 0.

Recall trace inner product in S™
X oS = trace(XS).

Strong duality holds and primal and dual attained if both are
strictly feasible.
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Optimality conditions for semidefinite programming
Primal and dual problems

min CeX max bly
X v,
subject to A(X) =10 subject to A*(y) +S5=C
X*>0 S=0

Here A :S"™ — R™ linear map.

Assume also that strong duality holds. Then X* and (y*, S*) are

respectively primal and dual optimal solutions if and only if
(X™*,y*, S*) solves

A (y)+S=C
A(X) = b
X5=0
X, 8 = 0.
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Central path for semidefinite programming
Primal barrier problem

n}}n C e X — 7log(det(X))
subject to A(X) =10
Dual barrier problem
max by + 7log(det(S))

Y,
subject to A*(y)+S=C

Optimality conditions for both

A (y) +S=C
AX)=0b
XS =11

X, 5~0.
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Newton step

Primal central path equations

A*(y) +7Xt=C

AX) =0
X >0
Newton equations
TXTTAXX L+ A*(Ay) = —(A*(y)+7X1-0)
ADX) = —(ACX)—b)

Similar dual central path and Newton equations involving (y, S).
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Primal-dual Newton step

Recall central path equations

A (y)+5-C 0
AX)—b =101, X,8~0.
XS i
“Natural” Newton step:
0 A I| |AX A*(y)+S5-C
A 0 0 Ay | =— AX)—b
S 0 X||AS XS —71

But we run into issues of symmetry...
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Nesterov-Todd direction

We want to linearize
XS —-71=0.

Primal linearization:
S—mX =0~ 717X AXX T4+ AS=7X"1-5.
Dual linearization:

X—-7851'=0~AX+7571ASS 1 =751 — X,
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Nesterov-Todd direction
Proper primal-dual linearization: average of previous two
WHAXW P+ AS=7X"1-8
or equivalently
AX + WASW =781 - X

provided
WSW = X.

Achieve the above by taking W as the geometric mean of X, S:

W = 5—1/2(51/2){51/2)1/25—1/2
:Xl/Q(Xl/QSXl/Z)—l/ZXl/Q
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Given X, S = 0, define 7(X, S) := X5

Primal-Dual Algorithm for Semidefinite Programming

1. Choose ¢ € (0,1)

2. Choose (X°,4°, 5% such that X° S° = 0
3. For k=0,1,...

» Compute Nesterov-Todd direction for
» Choose steplength 6 and set

(XRHL P SRy = (XF R, SF) 4 0, (AX, Ay, AS)
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