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Last time: quasi-Newton methods

Consider the problem
min
x

f(x)

with f convex, twice differentiable, dom(f) = Rn. Generic form of
quasi-Newton method: start with x(0) ∈ Rn, and repeat:

x(k) = x(k−1) − tkM (k−1)x(k−1), k = 1, 2, 3, . . .

where M (k−1) ≈ (∇2f(x(k−1)))−1, an approximation to the inverse
Hessian at x(k−1). Step sizes chosen by backtracking. Key: M (0) is
easily computed, and M (k−1) is easily updated from M (k−2), k ≥ 2

• SR1: rank 1 update for Hessian, use SMW for inverse Hessian

• DFP: rank 2 update for inverse Hessian, use SMW for Hessian

• BFGS: reverse roles of Hessian and inverse Hessian in DFP

• LBFGS: limited memory version of BFGS, very popular
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Outline

Today:

• Proximal Newton method

• Backtracking line search

• Convergence analysis

• Notable examples

• Projected Newton method
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Reminder: proximal gradient descent

Recall that proximal gradient descent operates on a problem

min
x

g(x) + h(x)

where g is convex, smooth and h is convex, “simple”. We choose
initial x(0) and repeat for k = 1, 2, 3, . . .

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)

where proxt(·) is the proximal operator associated with h,

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

• Difficulty of iterations is in applying prox, which depends only
on h (assuming that ∇g is computable)

• Proximal gradient descent enjoys same convergence rate as its
fully smooth version, hence useful when prox is efficient
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Recall the motivation for proximal gradient: iteratively minimize a
quadratic expansion in g, plus original h

x+ = argmin
z

1

2t
‖x− t∇g(x)− z‖22 + h(z)

= argmin
z

∇g(x)T (z − x) + 1

2t
‖z − x‖22 + h(z)

Quadratic approximation uses 1
t I (spherical curvature), as in pure

gradient descent when h = 0

A fundamental difference between gradient descent and Newton’s
method was that the latter also iteratively minimized quadratic
approximations, but these used the local Hessian of the function in
question

So what happens if we replace 1
t I in the above with ∇2g(x)?
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Proximal Newton method

This leads us to the proximal Newton method. Starting with x(0),
we repeat for k = 1, 2, 3, . . .

v(k) = argmin
v

∇g(x(k−1))T v + 1

2
vTH(k−1)v + h(x(k−1) + v)

x(k) = x(k−1) + tkv
(k)

Here H(k−1) = ∇2g(x(k−1)) is the Hessian at x(k−1), and tk is a
step size. Equivalent formulation:

z(k) = argmin
z

∇g(x(k−1))T (z − x(k−1)) +
1

2
(z − x(k−1))TH(k−1)(z − x(k−1)) + h(z)

x(k) = x(k−1) + tk(z
(k) − x(k−1))
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Scaled proximal map

Given H � 0, let us define

proxH(x) = argmin
z

1

2
‖x− z‖2H + h(z)

where ‖x‖2H = xTHx. This is called a scaled proximal map

With H = 1
t I, we get back usual (unscaled) definition. In general,

the scaled prox shares retains many of the nice properties of usual
prox (e.g., uniqueness, nonexpansiveness)

Now consider

z+ = argmin
z

∇g(x)T (z − x) + 1

2
(z − x)TH(z − x) + h(z)

= argmin
z

1

2
‖x−H−1∇g(x)− z‖2H + h(z)
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Thus another equivalent form for the proximal Newton update is:

z(k) = proxH(k−1)

(
x(k−1) − (H(k−1))−1∇g(x(k−1))

)

x(k) = x(k−1) + tk(z
(k) − x(k−1))

Notes:

• When h(z) = 0, we get back the usual Newton update

• If we replaced H(k−1) by 1
rk
I, and set tk = 1, we get proximal

gradient update, with step size rk

• Difficulty of prox depends strongly on h; however, now it also
depends on the structure of the Hessian of g

• E.g., having a diagonal or banded Hessian generally makes a
big difference compared to a dense Hessian
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Backtracking line search

As with Newton’s method in fully smooth problems, pure step sizes
tk = 1, k = 1, 2, 3, . . . need not converge. We need to apply, say,
backtracking line search. Fix 0 < α ≤ 1/2, 0 < β < 1, and let

v = proxH
(
x−H−1∇g(x)

)
− x

be the proximal Newton direction at a given iteration. Start with
t = 1, and while

f(x+ tv) > f(x) + αt∇g(x)T v + α
(
h(x+ tv)− h(x)

)

we shrink t = βt. (Here f = g + h)

Note: this scheme is actually of a different spirit than the one we
studied for proximal gradient descent, as it avoids recomputing the
prox at each inner backtracking iteration
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When would we use proximal Newton?

High level picture, for problem: min
x

g(x) + h(x)

Proximal gradient Proximal Newton

• Iteratively minimize
‖b− x‖22 + h(x)

• Often closed-form prox

• Iterations are cheap

• Convergence of gradient
descent

• Iteratively minimize
bTx+ xTAx+ h(x)

• Almost never closed-form
prox

• Iterations are very very
expensive

• Convergence of Newton’s
method

So we use proximal Newton when we have an fast inner optimizer
for scaled prox (quadratic plus h), expect few iterations
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Convergence analysis

Following Lee et al. (2012), assume that f = g + h, where g, h are
convex and g is twice smooth. Assume further:

• mI � ∇2g � LI, and ∇2g Lipschitz with parameter M

• proxH(·) is exactly evaluable

Theorem: Proximal Newton method with backtracking line
search converges globally. Furthermore, for all k ≥ k0:

‖x(k) − x?‖2 ≤
M

2m
‖x(k−1) − x?‖22

Recall that this is called local quadratic convergence. After k ≥ k0,
to get within f(x(k))− f? ≤ ε, we need O(log log(1/ε)) iterations.
Note: each iteration uses scaled prox evaluation!
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Proof sketch

• To prove global convergence, can show that at any step, the
backtracking exit condition will be satisfied by

t ≤ min
{
1,

2m

L
(1− α)

}

Use this to show that the update direction converges to zero,
which can only happen at the global minimum

• To prove local quadratic convergence, they show that for large
enough k, the pure step t = 1 eventually satisfies backtracking
exit condition. Therefore

‖x+ − x?‖2 ≤
↑

lowest eigenvalue
bound

1√
m
‖x+ − x?‖H ≤

↑
nonexpansiveness,
Lipschitzness,

largest eigenvalue

M

2m
‖x− x?‖22
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Glmnet and QUIC

Two notable examples of proximal Newton methods:

• glmnet (Friedman et al., 2009): prox Newton for `1 penalized
generalized linear models, inner probs solved using coordinate
descent

• QUIC (Hsiesh et al., 2011): prox Newton for graphical lasso
problem, uses factorization tricks, inner probs use coordinate
descent

Both of these implementations are very widely used for their own
purposes. At the proper scale, these are ≈ state-of-the-art

General note: proximal Newton method will use far less evaluations
of (gradient of) g than proximal gradient. When these evaluations
are expensive, proximal Newton can win
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Example: lasso logistic regression

Example from Lee et al. (2012): `1 regularized logistic regression,
FISTA (accelerated prox grad) versus spaRSA (spectral projected
gradient method) versus PN (proximal Newton)

Problem with n = 5000, p = 6000, and a dense feature matrix X
PROXIMAL NEWTON-TYPE METHODS 21
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Fig. 4.3: Logistic regression problem (gisette dataset). Proximal L-BFGS method
(L = 50) versus FISTA and SpaRSA.
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Fig. 4.4: Logistic regression problem (rcv1 dataset). Proximal L-BFGS method (L
= 50) versus FISTA and SpaRSA.

Again, the regularization term ∥w∥1 promotes sparse solutions and λ balances sparsity
with goodness-of-fit.

We use two datasets: (i) gisette, a handwritten digits dataset from the NIPS
2003 feature selection challenge (n = 5000), and (ii) rcv1, an archive of categorized
news stories from Reuters (n = 47, 000).2 The features of gisette have been scaled
to be within the interval [−1, 1], and those of rcv1 have been scaled to be unit vectors.
λ matched the value reported in [30], where it was chosen by five-fold cross validation
on the training set.

We compare a proximal L-BFGS method with SpaRSA and the TFOCS imple-
mentation of FISTA (also Nesterov’s 1983 method) on problem (4.2). We plot relative
suboptimality versus function evaluations and time on the gisette dataset in Figure
4.3 and on the rcv1 dataset in Figure 4.4.

The smooth part of the function requires many expensive exp/log evaluations.
On the dense gisette dataset (30 million nonzero entries in a 6000×5000 design ma-

2These datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

Here cost is dominated by expensive g,∇g (exp, log) evaluations
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Problem with n = 542, 000, p = 47, 000, and sparse matrix X

PROXIMAL NEWTON-TYPE METHODS 21
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Fig. 4.3: Logistic regression problem (gisette dataset). Proximal L-BFGS method
(L = 50) versus FISTA and SpaRSA.
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Fig. 4.4: Logistic regression problem (rcv1 dataset). Proximal L-BFGS method (L
= 50) versus FISTA and SpaRSA.

Again, the regularization term ∥w∥1 promotes sparse solutions and λ balances sparsity
with goodness-of-fit.

We use two datasets: (i) gisette, a handwritten digits dataset from the NIPS
2003 feature selection challenge (n = 5000), and (ii) rcv1, an archive of categorized
news stories from Reuters (n = 47, 000).2 The features of gisette have been scaled
to be within the interval [−1, 1], and those of rcv1 have been scaled to be unit vectors.
λ matched the value reported in [30], where it was chosen by five-fold cross validation
on the training set.

We compare a proximal L-BFGS method with SpaRSA and the TFOCS imple-
mentation of FISTA (also Nesterov’s 1983 method) on problem (4.2). We plot relative
suboptimality versus function evaluations and time on the gisette dataset in Figure
4.3 and on the rcv1 dataset in Figure 4.4.

The smooth part of the function requires many expensive exp/log evaluations.
On the dense gisette dataset (30 million nonzero entries in a 6000×5000 design ma-

2These datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

Now evaluating g,∇g make up less of total cost, since X is sparse
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Inexact prox evaluations

An important point: with proximal Newton, we essentially always
perform inexact prox evaluations (not so with proximal gradient)

Example from Lee et al. (2012): graphical lasso estimation, three
stopping rules for inner optimizations. Here n = 72 and p = 1255
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Fig. 4.1: Inverse covariance estimation problem (Estrogen dataset). Convergence
behavior of proximal BFGS method with three subproblem stopping conditions.
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Fig. 4.2: Inverse covariance estimation problem (Leukemia dataset). Convergence
behavior of proximal BFGS method with three subproblem stopping conditions.

transition is characteristic of BFGS and other quasi-Newton methods with superlinear
convergence.

On both datasets, the exact stopping condition yields the fastest convergence
(ignoring computational expense per step), followed closely by the adaptive stopping
condition (see Figure 4.1 and 4.2). If we account for time per step, then the adaptive
stopping condition yields the fastest convergence. Note that the adaptive stopping
condition yields superlinear convergence (like the exact proximal BFGS method). The
third condition (stop after 10 iterations) yields only linear convergence (like a first-
order method), and its convergence rate is affected by the condition number of Θ̂. On
the Leukemia dataset, the condition number is worse and the convergence is slower.

4.2. Logistic regression. Suppose we are given samples x(1), . . . , x(m) with
labels y(1), . . . , y(m) ∈ {−1, 1}. We fit a logit model to our data:

minimize
w∈Rn

1

m

m∑

i=1

log(1 + exp(−yiw
T xi)) + λ ∥w∥1 . (4.2)

Conclusion is that 10 inner iterations is not enough to ensure fast
(quadratic) convergence, but their adaptive stopping rule is
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For usual (smooth) Newton method, inner problem is to minimize
g̃k−1 quadratic approximation to g about x(k−1). Stop when

‖∇g̃k−1(x(k))‖2 ≤ ηk‖∇g(x(k−1))‖2

for a specifically chosen “forcing” sequence ηk, k = 1, 2, 3, . . .

For proximal Newton, Lee et al. (2012) advocate the analogy that
uses generalized gradients in place of gradients

‖Gf̃k−1/M
(x(k))‖2 ≤ ηk‖Gf/M (x(k−1))‖2

where f̃k−1 = g̃k−1 + h, and recall that m � ∇2g �MI. Setting

ηk = min

{
m

2
,
‖Gf̃k−2/M

(x(k−1))−Gf/M (x(k−1))‖2
‖Gf/M (x(k−2))‖2

}

they prove that inexact proximal Newton has local superlinear rate
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Proximal quasi-Newton methods

For large problems, computing the Hessian is prohibitive. Proximal
quasi-Newton avoids forming H(k−1) = ∇2g(x(k−1)) at each step

• Lee et al. (2012) propose BFGS-type updating rules. These
work very well empirically, and have local superlinear
convergence

• Tseng and Yun (2009) consider smooth plus block separable
problems, propose approximating the Hessian in a blockwise
fashion. Helpful because only small Hessians are ever needed.
Their method has linear convergence

Quasi-Newton can be helpful not only when Hessian is burdensome
computationally, but also when it is ill-conditioned: singular or near
singular
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What’s wrong with projected Newton?

When h = IC(x), indicator function of convex set C, our problem:

min
x

g(x) subject to x ∈ C

Proximal gradient descent in this case reduces to projected gradient
descent. What about proximal Newton? Updates are based on

z+ = argmin
z∈C

1

2
‖x−H−1∇g(x)− z‖2H

= argmin
z∈C

∇g(x)T (z − x) + 1

2
(z − x)TH(z − x)

Note when H = I this a projection of x−∇g(x) onto C, but not a
projection in general! In fact, it is much more complicated. Hence,
projected Newton does not generally follow from proximal Newton
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Projected Newton for box constraints

In special cases, projected Newton can be made to work, e.g., for
box constraints (Bertsekas, 1982; Kim et al., 2010; Schmidt et al.,
2011). Given a problem

min
x

g(x) subject to l ≤ x ≤ u

the projected Newton method specifies an initial point x(0), small
constant ε > 0, and repeats the following steps for k = 1, 2, 3, . . .

• Define the binding set

Bk−1 = {i : x(k−1)i ≤ li + ε and ∇ig(x
(k−1)) > 0} ∪

{i : x(k−1)i ≥ ui − ε and ∇ig(x
(k−1)) < 0}

These are the variables that are at (close to) boundary, and
moving them any further would decrease the criterion
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• Define the free set Fk−1 = {1, . . . n} \Bk−1

• Define the inverse of the principal submatrix of the Hessian
along the free variables

S(k−1) =
[(
∇2g(x(k−1))

)
Fk−1

]−1

• Take a Newton step along the free variables only, then project:

x(k) = P[l,u]

(
x(k−1) − tk

[
S(k−1) 0

0 I

] [
∇Fk−1

g(x(k−1))

∇Bk−1
g(x(k−1))

])

where P[l,u] is the projection onto [l, u] = [l1, u1]× . . . [ln, un]
• Note that the update leaves binding set effectively untouched
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Convergence properties

Convergence properties:

• Bertsekas (1982) shows that, under appropriate assumptions,
projected Newton identifies the proper binding constraints in a
finite number of iterations. Then it is just the usual Newton’s
method on the free variables

• Bertsekas (1982) also proves superlinear convergence

• Kim et al. (2010), Schmidt et al. (2011) describe a projected
quasi-Newton method, using BFGS-style updates

What kinds of problems have box constraints? Lots, it turns out!

• Nonnegative least squares

• Support vector machine dual

• Graphical lasso dual

• Fused lasso (total variation denoising) dual
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Example from Kim et al. (2010): image deblurring performed with
nonnegative KL divergence minimization

Original image Blurred image PQN-LBFGS LBFGS-B

Fig. 4.1. Deblurring example using PQN-LBFGS and LBFGS-B, from top to bottom, a blurred
image of the moon, a cell, a brain, and Haumea (a dwarf planet).

We emphasize that the simplicity and ease of implementation of our methods
are two strong points that favor wide applicability. It remains, however, a subject
of future research to make further algorithmic improvements, e.g., to the line-search
step. These improvements will help to fully automate the solution without requiring
any parameter tuning.
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