Quasi-Newton Methods

Javier Pefa
Convex Optimization 10-725/36-725



Last time: primal-dual interior-point methods
Consider the problem

min  f(x)
subject to Ax =b
h(z) <0

Assume f,h1,...,h;, are convex and differentiable. Assume also
that strong duality holds.

Central path equations:

Vf(z)+ Vh(z)u+ATv =0
Uh(z)+711=0

Ar—b=0

u, —h(z) > 0.



Primal-dual interior-point algorithm

Let
Vf(z)+ Vh(z)u+ ATv

Uh(xz)+ 71
Ax —b

r(z,u,v) =

)

Crux of each iteration
(xT,ut,vh) = (z,u,v) + 0(Ax, Au, Av)

where (Axz, Au, Av) is the Newton step:

V2f(z)+ >, u;V2hi(z) Vh(z) AT [Az
UVh(z)T H(z) 0 Au| = —r(x,u,v)
A 0 0 Av

Here U = Diag(u), H(z) = Diag(h(x)).
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Gradient descent and Newton revisited
Consider the unconstrained, smooth optimization problem
min f(x)
X

where f is twice differentiable, and dom(f) = R".

Gradient descent method

2T =2 —tVf(2)

Newton's method

xt =x —tV2f(x) 'V f(x)



Quasi-Newton methods

Two main steps in Newton's method:
e Compute Hessian V2 f(x)

e Solve the system of equations
V2 f(z)p = =V f(x).

Each of these two steps could be expensive.

Quasi-Newton method

Use instead
zt=x+ tp

where
Bp = -V [(r)
for some approximation B of V2f(x).

Want B easy to compute and Bp = g easy to solve.



A bit of history

In the mid 1950s W. Davidon was a physicist at Argonne National
Lab. He was using a coordinate descent method to solve a long
optimization calculation that kept crashing the computer before
finishing.

Davidon figured out a way to accelerate the computation — the
first quasi-Newton method ever. Although Davidon's contribution
was a major breakthrough in optimization, his original paper was
rejected. In 1991, after more than 30 years, his paper was
published in the first issue of the SIAM Journal on Optimization.

In addition to his remarkable work in optimization, Davidon was a
peace activist. Part of his story is nicely described in The Burglary
a book published shortly after he passed away in 2013.



Secant equation
We would like B* to approximate V2 f(z*), that is
Vih +s) =~ Vf(ab) + BFs.

k+1

Once z = z¥ 4+ s* is computed, we would like a new B¥*1.

Idea: since BF already contains some information, make some
suitable update.

Reasonable requirement for B*+1
vf(xk+1) — Vf(l'k) + BkJrlSk‘
or equivalently

Bk+18k —_ vf($k+1) o vf(xk)



Secant equation

The latter condition is called the secant equation and written as

BFLskE — % or simply Bts =y

where s¥ = 2kl — 2% and ¥ = V f(2F*1) — Vf(2F).

In addition to the secant equation, we would like
(i) BT symmetric

(i) BT “close” to B

(iii) B positive definite = B positive definite



Symmetric rank-one update (SR1)

Try an update of the form

Bt = B+ auu'

Observe
Bts=y= (au's)u =y — Bs

The latter can hold only if w is a multiple of y — Bs.
It follows that the only symmetric rank-one update that satisfies
the secant equation is

(y— Bs)(y— Bs)T
(y— Bs)Ts

Bt =B+
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Sherman-Morrison-Woodbury formula

A low-rank update on a matrix corresponds to a low rank update
on its inverse.

Theorem (Sherman-Morrison-Woodbury formula)

Assume A € R™" and U,V € R™*¢. Then A+ UV is
nonsingular if and only if I + VT A™U is nonsingular. In that case

(A+Uuvht=A"1 A lUua+vTAalu)ta!

Thus for the SR1 update the inverse H of B is also easily updated:
(s — Hy)(s — Hy)T
(s —Hy)Ty

SR1 is simple but has two shortcomings: it may fail if
(y — Bs)Ts =~ 0 and it does not preserve positive definiteness.

H"=H+
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Davidon-Fletcher-Powell (DFP) update

Try a rank-two update
HY = H +auu' +bov'.
The secant equation yields
s — Hy = (au"y)u + (bv'y)v.
Putting u = s, v = Hy, and solving for a,b we get

Hyy"H T
y' Hy y's

By Sherman-Morrison-Woodbury we get a rank-two update on B

propy W=D Bl y-Bs)ls g

yls yTs (yTs)?

- ysT sy™\ yy'
=\I-"F)B\I- =)+ =+
yTs yTs)  yTs
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DFP update — alternate derivation

Find Bt closest to B in some norm so that B satisfies the secant
equation and is symmetric:
min ||BT — B|-
B+
subject to BT = (BH)T
Bts=y

What norm to use?
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Curvature condition
Observe: BT positive definite and BTs = g imply
yTs =s'Bts>0.
The inequality y"s > 0 is called the curvature condition.

Fact: if y,s € R® and y's > 0 then there exists A/ symmetric and
positive definite such that Ms = y.

DFP update again

Solve
min WL (B~ BW T
subject to BT = (BT)T

BTs=y

where W € R™ ™ is nonsingular and such that WIWTs = y.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Same ideas as the DFP update but with roles of B and H
exchanged.

Secant equation
Hty=s& Bts=y
Closeness to H:
min |W=YHY - H)W~T|
H
subject to HT = (H*)T
Hty=s

where W € R™ ™ is nonsingular and WV Ty = s.
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BFGS update

Swapping H and B and y and s in the DFP update we get

T T
Bt_p_ Bss'B vy
sTBs  yls

and

(s—Hy)s'  s(s—Hy)' (s—Hy'y 7
y's y's (yTs)?

T T T
(=) w1
y's y's y's

Both DFP and BFGS preserve positive definiteness: if B is positive
definite and y"s > 0 then B is positive definite.

HY =H +

BFGS is more popular than DFP. It also has a “self-correcting”
property.
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The Broyden class

SR1, DFP, and BFGS are some of many possible quasi-Newton
updates. The Broyden class of updates is defined by

Bt = (1— ¢)Bgres + ¢Bpp, for ¢ € R.

By putting v := Tys - 51]'3158;5 we can rewrite the above as
B-‘r B BSSTB yy +¢( TB )
=B-— s)v
sTBs

Observe

e BFGS and DFP correspond to ¢ = 0 and ¢ = 1 respectively.

;
e SR1 corresponds to ¢ = m
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Superlinear convergence

Back to our main goal:

min f(z)

where f is twice differentiable, and dom(f) = R"™.

Quasi-Newton method

e Pick initial 2° and B°

e For k=0,1,...
» Solve BFp* = —V f(zF)
» Pick t, and let 21 = 2% + ¢ pF
» update B* to BFt!

end for
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Superlinear convergence

Under suitable assumptions on the objective function f(z) and on
the step size ¢, we get superlinear convergence:

Step length (Wolfe conditions)
Assume t is chosen (via backtracking) so that

flz+tp) < f(z) + aatVf(z)Tp

and
Vi@ +tp)Tp > as|Vf(x) |

for 0 < oy < ag < 1.
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Superlinear convergence

The crux of superlinear convergence is the following technical
result.

Theorem (Dennis-Moré)

Assume f is twice differentiable, x* — xz* such that V f(z*) = 0
and V2 f(x*) is positive definite. If the search direction p* satisfies

V) - V]
dim I =0 @

then there exists kg such that
(i) The step length t, = 1 satisfies Wolfe conditions for k > k.
(i) Ifty, =1 for k > ko then z* — z* superlinearly.

Under suitable assumptions, DFP and BFGS updates ensure (1)
holds for p* = —H*V f(x*) and we get superlinear convergence.
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Limited memory BFGS (LBFGS)

For large problems, exact quasi-Newton updates becomes too
costly.

An alternative is to maintain a compact approximation of the
matrices: save only a few n x 1 vectors and compute the matrix
implicitly.

The BFGS method computes the search direction
p=—-HVf(z)

where H is updated via
T T T

sy ys s8
Ht=(I-=-H|(I-%- —
< yT8> < yT8> T

21



LBFGS

Instead of computing and storing H, compute an implicit modified
version of H by maintaining the last m pairs (y, s).

Observe
HYg=p+ (a—P)s

where

yTp
,q=g—ay, p= Hq,ﬁ—fs

»
S

o =

B
Qﬁ

Hence Hg can be computed via two loops of length k if H is
obtained after £ BFGS updates.

For k& > m LBFGS limits the length of these loops to m.
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LBFGS
LBFGS computation of p* = —HV f(a*)

1. q:=-Vf(z"
2. fori=k—1,...,min(k —m,0)
= D%
7 (yz)Tszl
qi=q-ay
end for
3. p:= H%q
4. for i = min(k —m,0),...,k—1
— @)'p
5 - (yi)TSi '
p=p+ (2 — B)s’
5. return p

In step 3 H%F is the “initial” H. Popular choice
P

Ho,k _ (yk—l)Tsk—l

(yk—l)Tyk—l 23



Stochastic quasi-Newton methods
Consider the problem

min E(f(x;¢))
where f(x,&) depends on a random input &.

Stochastic gradient descent (SGD)

Use a draw of £ to compute a random gradient of the objective
function
aF = ok — 4,V (2", &)

Stochastic quasi-Newton template
Extend previous ideas

T =2~ HRV f (2, &)
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Stochastic quasi-Newton methods

Some challenges:

e Theoretical limitations: stochastic iteration cannot have faster
than sublinear rate of convergence.

e Additional cost: a major advantage of SGD (and similar
algorithms) is their low cost per iteration. Could the additional
overhead of a quasi-Newton method be compensated?

e Conditioning of scaling matrices: updates on H depend on
consecutive gradient estimates. The noise in the random
gradient estimates can be a hindrance in the updates.
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Online BFGS

The most straightforward adaptation of quasi-Newton methods is
to use BFGS (or LBFGS) with

Sk = $k+1 — xk, yk = vf(xk+17§k) - vf($k7§k)

Key: use the same & in the two above stochastic gradients.
Maintain H* via BFGS or LBFGS updates.

This approach, referred to as online BFGS, is due to
Schraudolph-Yu-Giinter.

With proper tuning it can give some improvement over SGD.
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Other stochastic quasi-Newton methods

Byrd-Hansen-Nocedal-Singer propose a stochastic version of
LBFGS but with two main changes:
e Perform LBFGS update only every L iterations

e For s and y use respectively
k

s=xz'— 7! where 7' = g '

i=k—L+1

and R
y=V2F(zh)s

where §2F(:i't) is a Hessian approximation (based on a
random subsample).
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Some results (Byrd-Hansen-Nocedal-Singer)

SQN vs SGD on Synthetic Binary Logistic Regression
with n = 50 and N = 7000

fx versus accessed data points
10° | ——SGD:b=50,=7 J
——SQN: b =50, =2, bH = 300
——SQN: b =50, =2, bH = 600
= = =CD approx min

x 10
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More results (Byrd-Hansen-Nocedal-Singer)

RCV1 SPEECH
+='='0oLBFGS: b =50 10°% <= = oLBFGS: b =100
= = oLBFGS: b =300 = = oLBFGS: b =500
——SQN: b=50 ——SQN: b=100
— SQN: b =300 10%° —— SQN: b =500
-0.7 |-
| x
i ————————————— | &
100.27
-0.9 10!).24
1.9161 3.8321 5.7482 7.6643 9.5803

0.6883 1.3767 2.065 2.7533
adp x 10° adp x10°
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