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Last time: primal-dual interior-point methods

Consider the problem

min
x

f(x)

subject to Ax = b
h(x) ≤ 0

Assume f, h1, . . . , hm are convex and differentiable. Assume also
that strong duality holds.

Central path equations:

∇f(x) +∇h(x)u+ATv = 0

Uh(x) + τ1 = 0

Ax− b = 0

u,−h(x) > 0.

2



Primal-dual interior-point algorithm

Let

r(x, u, v) :=



∇f(x) +∇h(x)u+ATv

Uh(x) + τ1
Ax− b


 ,

Crux of each iteration

(x+, u+, v+) := (x, u, v) + θ(∆x,∆u,∆v)

where (∆x,∆u,∆v) is the Newton step:



∇2f(x) +

∑
i ui∇2hi(x) ∇h(x) AT

U∇h(x)T H(x) 0
A 0 0






∆x
∆u
∆v


 = −r(x, u, v)

Here U = Diag(u), H(x) = Diag(h(x)).
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Outline

Today:

• Motivation for quasi-Newton methods

• Most popular updates: SR1, DFP, BFGS, Broyden class

• Superlinear convergence

• Limited memory BFGS

• Stochastic quasi-Newton methods
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Gradient descent and Newton revisited

Consider the unconstrained, smooth optimization problem

min
x

f(x)

where f is twice differentiable, and dom(f) = Rn.

Gradient descent method

x+ = x− t∇f(x)

Newton’s method

x+ = x− t∇2f(x)−1∇f(x)
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Quasi-Newton methods

Two main steps in Newton’s method:

• Compute Hessian ∇2f(x)

• Solve the system of equations

∇2f(x)p = −∇f(x).

Each of these two steps could be expensive.

Quasi-Newton method
Use instead

x+ = x+ tp

where
Bp = −∇f(x)

for some approximation B of ∇2f(x).

Want B easy to compute and Bp = g easy to solve.
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A bit of history

In the mid 1950s W. Davidon was a physicist at Argonne National
Lab. He was using a coordinate descent method to solve a long
optimization calculation that kept crashing the computer before
finishing.

Davidon figured out a way to accelerate the computation — the
first quasi-Newton method ever. Although Davidon’s contribution
was a major breakthrough in optimization, his original paper was
rejected. In 1991, after more than 30 years, his paper was
published in the first issue of the SIAM Journal on Optimization.

In addition to his remarkable work in optimization, Davidon was a
peace activist. Part of his story is nicely described in The Burglary
a book published shortly after he passed away in 2013.
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Secant equation

We would like Bk to approximate ∇2f(xk), that is

∇f(xk + s) ≈ ∇f(xk) +Bks.

Once xk+1 = xk + sk is computed, we would like a new Bk+1.

Idea: since Bk already contains some information, make some
suitable update.

Reasonable requirement for Bk+1

∇f(xk+1) = ∇f(xk) +Bk+1sk

or equivalently

Bk+1sk = ∇f(xk+1)−∇f(xk).
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Secant equation

The latter condition is called the secant equation and written as

Bk+1sk = yk or simply B+s = y

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).

In addition to the secant equation, we would like

(i) B+ symmetric

(ii) B+ “close” to B

(iii) B positive definite ⇒ B+ positive definite
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Symmetric rank-one update (SR1)

Try an update of the form

B+ = B + auuT

Observe
B+s = y ⇒ (auTs)u = y −Bs

The latter can hold only if u is a multiple of y −Bs.

It follows that the only symmetric rank-one update that satisfies
the secant equation is

B+ = B +
(y −Bs)(y −Bs)T

(y −Bs)Ts .
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Sherman-Morrison-Woodbury formula

A low-rank update on a matrix corresponds to a low rank update
on its inverse.

Theorem (Sherman-Morrison-Woodbury formula)

Assume A ∈ Rn×n, and U, V ∈ Rn×d. Then A+ UV T is
nonsingular if and only if I + V TA−1U is nonsingular. In that case

(A+ UV T)−1 = A−1 −A−1U(I + V TA−1U)−1A−1

Thus for the SR1 update the inverse H of B is also easily updated:

H+ = H +
(s−Hy)(s−Hy)T

(s−Hy)Ty
.

SR1 is simple but has two shortcomings: it may fail if
(y −Bs)Ts ≈ 0 and it does not preserve positive definiteness.
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Davidon-Fletcher-Powell (DFP) update
Try a rank-two update

H+ = H + auuT + bvvT.

The secant equation yields

s−Hy = (auTy)u+ (bvTy)v.

Putting u = s, v = Hy, and solving for a, b we get

H+ = H − HyyTH

yTHy
+
ssT

yTs

By Sherman-Morrison-Woodbury we get a rank-two update on B

B+ = B +
(y −Bs)yT

yTs
+
y(y −Bs)T

yTs
− (y −Bs)Ts

(yTs)2
yyT

=

(
I − ysT

yTs

)
B

(
I − syT

yTs

)
+
yyT

yTs
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DFP update – alternate derivation

Find B+ closest to B in some norm so that B+ satisfies the secant
equation and is symmetric:

min
B+

‖B+ −B‖?
subject to B+ = (B+)T

B+s = y

What norm to use?
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Curvature condition

Observe: B+ positive definite and B+s = y imply

yTs = sTB+s > 0.

The inequality yTs > 0 is called the curvature condition.

Fact: if y, s ∈ Rn and yTs > 0 then there exists M symmetric and
positive definite such that Ms = y.

DFP update again

Solve
min
B+

‖W−1(B+ −B)W−T‖F
subject to B+ = (B+)T

B+s = y

where W ∈ Rn×n is nonsingular and such that WWTs = y.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Same ideas as the DFP update but with roles of B and H
exchanged.

Secant equation
H+y = s⇔ B+s = y

Closeness to H:

min
H+

‖W−1(H+ −H)W−T‖F
subject to H+ = (H+)T

H+y = s

where W ∈ Rn×n is nonsingular and WWTy = s.

15



BFGS update

Swapping H and B and y and s in the DFP update we get

B+ = B − BssTB

sTBs
+
yyT

yTs

and

H+ = H +
(s−Hy)sT

yTs
+
s(s−Hy)T

yTs
− (s−Hy)Ty

(yTs)2
ssT

=

(
I − syT

yTs

)
H

(
I − ysT

yTs

)
+
ssT

yTs

Both DFP and BFGS preserve positive definiteness: if B is positive
definite and yTs > 0 then B+ is positive definite.

BFGS is more popular than DFP. It also has a “self-correcting”
property.

16



The Broyden class

SR1, DFP, and BFGS are some of many possible quasi-Newton
updates. The Broyden class of updates is defined by

B+ = (1− φ)B+
BFGS + φB+

DFP, for φ ∈ R.

By putting v := y
yTs
− Bs

sTBs
we can rewrite the above as

B+ = B − BssTB

sTBs
+
yyT

yTs
+ φ(sTBs)vvT.

Observe

• BFGS and DFP correspond to φ = 0 and φ = 1 respectively.

• SR1 corresponds to φ = yTs
yTs−sTBs
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Superlinear convergence

Back to our main goal:
min
x

f(x)

where f is twice differentiable, and dom(f) = Rn.

Quasi-Newton method

• Pick initial x0 and B0

• For k = 0, 1, . . .
I Solve Bkpk = −∇f(xk)
I Pick tk and let xk+1 = xk + tkp

k

I update Bk to Bk+1

end for
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Superlinear convergence

Under suitable assumptions on the objective function f(x) and on
the step size tk we get superlinear convergence:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.

Step length (Wolfe conditions)

Assume t is chosen (via backtracking) so that

f(x+ tp) ≤ f(x) + α1t∇f(x)Tp

and
∇f(x+ tp)Tp ≥ α2|∇f(x)Tp|

for 0 < α1 < α2 < 1.
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Superlinear convergence

The crux of superlinear convergence is the following technical
result.

Theorem (Dennis-Moré)

Assume f is twice differentiable, xk → x∗ such that ∇f(x∗) = 0
and ∇2f(x∗) is positive definite. If the search direction pk satisfies

lim
k→∞

‖∇f(xk)−∇2f(xk)pk‖
‖pk‖ = 0 (1)

then there exists k0 such that

(i) The step length tk = 1 satisfies Wolfe conditions for k ≥ k0.
(ii) If tk = 1 for k ≥ k0 then xk → x∗ superlinearly.

Under suitable assumptions, DFP and BFGS updates ensure (1)
holds for pk = −Hk∇f(xk) and we get superlinear convergence.
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Limited memory BFGS (LBFGS)

For large problems, exact quasi-Newton updates becomes too
costly.

An alternative is to maintain a compact approximation of the
matrices: save only a few n× 1 vectors and compute the matrix
implicitly.

The BFGS method computes the search direction

p = −H∇f(x)

where H is updated via

H+ =

(
I − syT

yTs

)
H

(
I − ysT

yTs

)
+
ssT

yTs
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LBFGS

Instead of computing and storing H, compute an implicit modified
version of H by maintaining the last m pairs (y, s).

Observe
H+g = p+ (α− β)s

where

α =
sTg

yTs
, q = g − αy, p = Hq, β =

yTp

yTs

Hence Hg can be computed via two loops of length k if H is
obtained after k BFGS updates.

For k ≥ m LBFGS limits the length of these loops to m.
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LBFGS

LBFGS computation of pk = −Hk∇f(xk)

1. q := −∇f(xk)

2. for i = k − 1, . . . ,min(k −m, 0)

αi := (si)Tq
(yi)Tsi

q := q − αyi
end for

3. p := H0,kq

4. for i = min(k −m, 0), . . . , k − 1

β := (yi)Tp
(yi)Tsi

p := p+ (αi − β)si

5. return p

In step 3 H0,k is the “initial” H. Popular choice

H0,k :=
(yk−1)Tsk−1

(yk−1)Tyk−1
I
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Stochastic quasi-Newton methods
Consider the problem

min
x

E(f(x; ξ))

where f(x, ξ) depends on a random input ξ.

Stochastic gradient descent (SGD)

Use a draw of ξ to compute a random gradient of the objective
function

xk+1 = xk − tk∇f(xk, ξk)

Stochastic quasi-Newton template

Extend previous ideas

xk+1 = xk − tkHk∇f(xk, ξk)
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Stochastic quasi-Newton methods

Some challenges:

• Theoretical limitations: stochastic iteration cannot have faster
than sublinear rate of convergence.

• Additional cost: a major advantage of SGD (and similar
algorithms) is their low cost per iteration. Could the additional
overhead of a quasi-Newton method be compensated?

• Conditioning of scaling matrices: updates on H depend on
consecutive gradient estimates. The noise in the random
gradient estimates can be a hindrance in the updates.
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Online BFGS

The most straightforward adaptation of quasi-Newton methods is
to use BFGS (or LBFGS) with

sk = xk+1 − xk, yk = ∇f(xk+1, ξk)−∇f(xk, ξk)

Key: use the same ξk in the two above stochastic gradients.

Maintain Hk via BFGS or LBFGS updates.

This approach, referred to as online BFGS, is due to
Schraudolph-Yu-Günter.

With proper tuning it can give some improvement over SGD.
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Other stochastic quasi-Newton methods

Byrd-Hansen-Nocedal-Singer propose a stochastic version of
LBFGS but with two main changes:

• Perform LBFGS update only every L iterations

• For s and y use respectively

s = x̄t − x̄t−1 where x̄t =

k∑

i=k−L+1

xi

and
y = ∇̂2F (x̄t)s

where ∇̂2F (x̄t) is a Hessian approximation (based on a
random subsample).
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Some results (Byrd-Hansen-Nocedal-Singer)

the particular implementation [13] of one of the coordinate descent (CD) methods of
Tseng and Yun [26].

Figure 1 reports the performance of SGD (with � = 7) and SQN (with � = 2),
as measured by accessed data points. Both methods use a gradient batch size of
b = 50; for SQN we display results for two values of the Hessian batch size bH , and
set M = 10 and L = 10. The vertical axis, labeled fx, measures the value of the
objective (4.1); the dotted black line marks the best function value obtained by the
coordinate descent (CD) method mentioned above. We observe that the SQN method
with bH = 300 and 600 outperforms SGD, and obtains the same or better objective
value than the coordinate descent method.
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fx versus accessed data points
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fx

 

 
SGD: b = 50, β = 7

SQN: b = 50, β = 2, bH = 300

SQN: b = 50, β = 2, bH = 600

CD approx min

SQN vs SGD on Synthetic Binary Logistic Regression
with n = 50 and N = 7000

Figure 1: Illustration of SQN and SGD on the synthetic dataset. The dotted black
line marks the best function value obtained by the coordinate descent (CD) method.
For SQN we set M = 10, L = 10 and bH = 300 or 600.
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More results (Byrd-Hansen-Nocedal-Singer)

where we have used subscripts to indicate the sample used in the computation of the
gradient r̂F . The extra gradient evaluation is similar in cost to our Hessian-vector
product, but we compute that product only every L iterations. Thus, the oLBFGS
method is analogous to our algorithm with L = 1 and b = bH , which as the numerical
results below show, is not an e�cient allocation of e↵ort. In addition, the oLBFGS
method is limited in the choice of samples S because, when these are small, the
Hessian approximations may be of poor quality.

We implemented the oLBFGS method as described in [24], with the following
parameter settings: i) we found it to be unnecessary to add a damping parameter to
the computation yk, and thus set � = 0 in the reset yk  yk + �sk; ii) the parameter

✏ used to rescaled the first iteration, w1 = w0 � ✏↵k brF (w0), was set to ✏ = 10�6; iii)
the initial choice of scaling parameter in Hessian updating (see Step 1 of Algorithm 2)
was the average of the quotients sT

i yi/y
T
i yi averaged over the last M iterations, as

recommended in [24].
Figure 12 compares our SQN method to the aforementioned oLBFGS on our two

realistic test problems, in terms of accessed data points. We observe that SQN has
overall better performance, which is more pronounced for smaller batch sizes.
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Figure 12: Comparison of oLBFGS (dashed lines) and SQN (solid lines) in terms of
accessed data points. For RCV1 dataset gradient batches are set to b = 50 or 300,
for both methods; additional parameter settings for SQN are L = 20, bH = 1000,
M = 10. For Speech dataset we set to b = 100 or 500; and for SQN we set L = 10,
bH = 1000, M = 10.

5 Related Work

Various stochastic quasi-Newton algorithms have been proposed in the literature [24,
12, 4, 22], but have not been entirely successful. The methods in [24] and [12] use
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