
Subgradient Method

Lecturer: Ryan Tibshirani
Convex Optimization 10-725/36-725

Last last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and differentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search

If ∇f Lipschitz, gradient descent has convergence rate O(1/ε)

Downsides:

• Requires f differentiable ← this lecture

• Can be slow to converge ← next lecture

2

Subgradient method

Now consider f convex, with dom(f) = Rn, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. I.e., initialize x(0), repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . .

where g(k−1) ∈ ∂f(x(k−1)), any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(0), . . . x(k) so far, i.e.,

f(x
(k)
best) = min

i=0,...k
f(x(i))

3

Outline

Today:

• How to choose step sizes

• Convergence analysis

• Intersection of sets

• Stochastic subgradient method

4

Step size choices

• Fixed step sizes: tk = t all k = 1, 2, 3, . . .

• Diminishing step sizes: choose to meet conditions

∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞,

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
step sizes are typically pre-specified, not adaptively computed

5

Convergence analysis

Assume that f convex, dom(f) = Rn, and also that f is Lipschitz
continuous with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G‖x− y‖2 for all x, y

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f

? +G2t/2

Theorem: For diminishing step sizes, subgradient method sat-
isfies

lim
k→∞

f(x
(k)
best) = f?

6

Basic inequality

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient,

‖x(k) − x?‖22 ≤
‖x(k−1) − x?‖22 − 2tk

(
f(x(k−1))− f(x?)

)
+ t2k‖g(k−1)‖22

• Iterating last inequality,

‖x(k) − x?‖22 ≤

‖x(0) − x?‖22 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+

k∑
i=1

t2i ‖g(i−1)‖22

7

• Using ‖x(k) − x?‖2 ≥ 0, and letting R = ‖x(0) − x?‖2,

0 ≤ R2 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+G2

k∑
i=1

t2i

• Introducing f(x
(k)
best) = mini=0,...k f(x

(i)), and rearranging, we
have the basic inequality

f(x
(k)
best)− f(x

?) ≤
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti

For different step sizes choices, convergence results can be directly
obtained from this bound. E.g., theorems for fixed and diminishing
step sizes follow

8

Convergence rate

The basic inequality tells us that after k steps, we have

f(x
(k)
best)− f(x

?) ≤
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti

With fixed step size t, this gives

f(x
(k)
best)− f

? ≤ R2

2kt
+
G2t

2

For this to be ≤ ε, let’s make each term ≤ ε/2. Therefore choose
t = ε/G2, and k = R2/t · 1/ε = R2G2/ε2

I.e., subgradient method has convergence rate O(1/ε2) ... compare
this to O(1/ε) rate of gradient descent

9

Example: regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, . . . n, consider the logistic
regression loss:

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β)

)
This is a smooth and convex, with

∇f(β) =
n∑
i=1

(
yi − pi(β)

)
xi

where pi(β) = exp(xTi β)/(1 + exp(xTi β)), i = 1, . . . n. We will
consider the regularized problem:

min
β

f(β) + λ · P (β)

where P (β) = ‖β‖22 (ridge penalty) or P (β) = ‖β‖1 (lasso penalty)

10

Ridge problem: use gradients; lasso problem: use subgradients.
Data example with n = 1000, p = 20:

0 50 100 150 200

1e
−

13
1e

−
10

1e
−

07
1e

−
04

1e
−

01
Gradient descent

k

f−
fs

ta
r

t=0.001

0 50 100 150 200

0.
02

0.
05

0.
20

0.
50

2.
00

Subgradient method

k

f−
fs

ta
r

t=0.001
t=0.001/k

Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)

11

Polyak step sizes

Polyak step sizes: when the optimal value f? is known, take

tk =
f(x(k−1))− f?

‖g(k−1)‖22
, k = 1, 2, 3, . . .

Can be motivated from first step in subgradient proof:

‖x(k)−x?‖22 ≤ ‖x(k−1)−x?‖22−2tk
(
f(x(k−1))−f(x?)

)
+t2k‖g(k−1)‖22

Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to
optimal value. Convergence rate is still O(1/ε2)

12

Example: intersection of sets

Suppose we want to find x? ∈ C1 ∩ . . . ∩ Cm, i.e., find a point in
intersection of closed, convex sets C1, . . . Cm

First define

fi(x) = dist(x,Ci), i = 1, . . .m

f(x) = max
i=1,...m

fi(x)

and now solve
min
x

f(x)

Note that f? = 0 ⇒ x? ∈ C1 ∩ . . . ∩ Cm. Check: is this problem
convex?

13

Recall the distance function dist(x,C) = miny∈C ‖y − x‖2. Last
time we computed its gradient

∇dist(x,C) = x− PC(x)
‖x− PC(x)‖2

where PC(x) is the projection of x onto C

Also recall subgradient rule: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv

(⋃
i:fi(x)=f(x)

∂fi(x)

)

So if fi(x) = f(x) and gi ∈ ∂fi(x), then gi ∈ ∂f(x)

14

Put these two facts together for intersection of sets problem, with
fi(x) = dist(x,Ci): if Ci is farthest set from x (so fi(x) = f(x)),
and

gi = ∇fi(x) =
x− PCi(x)

‖x− PCi(x)‖2
then gi ∈ ∂f(x)

Now apply subgradient method, with Polyak size tk = f(x(k−1)).
At iteration k, with Ci farthest from x(k−1), we perform update

x(k) = x(k−1) − f(x(k−1)) x(k−1) − PCi(x
(k−1))

‖x(k−1) − PCi(x
(k−1))‖2

= PCi(x
(k−1))

15

For two sets, this is the famous alternating projections algorithm,
i.e., just keep projecting back and forth

(From Boyd’s lecture notes)

16

Projected subgradient method

To optimize a convex function f over a convex set C,

min
x

f(x) subject to x ∈ C

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C at each iteration:

x(k) = PC
(
x(k−1) − tk · g(k−1)

)
, k = 1, 2, 3, . . .

Assuming we can do this projection, we get the same convergence
guarantees as the usual subgradient method, with the same step
size choices

17

What sets C are easy to project onto? Lots, e.g.,

• Affine images: {Ax+ b : x ∈ Rn}
• Solution set of linear system: {x : Ax = b}
• Nonnegative orthant: Rn+ = {x : x ≥ 0}
• Some norm balls: {x : ‖x‖p ≤ 1} for p = 1, 2,∞
• Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and PC
can turn out to be very hard! E.g., generally hard to project onto
arbitrary polyhedron C = {x : Ax ≤ b}

Note: projected gradient descent works too, more next time ...

18

Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum
of convex functions

min
x

m∑
i=1

fi(x)

Stochastic subgradient method repeats:

x(k) = x(k−1) − tk · g
(k−1)
ik

, k = 1, 2, 3, . . .

where ik ∈ {1, . . .m} is some chosen index at iteration k, chosen

by either by the random or cyclic rule, and g
(k−1)
i ∈ ∂fi(x(k−1))

(this update direction is used in place of the usual
∑m

i=1 g
(k−1)
i)

Note that when each fi, i = 1, . . . ,m is differentiable, this reduces
to stochastic gradient descent (SGD)

19

Convergence of stochastic methods

Assume each fi, i = 1, . . .m is convex and Lipschitz with constant
G > 0

For fixed step sizes tk = t, k = 1, 2, 3, . . ., cyclic and randomized1

stochastic subgradient methods both satisfy

lim
k→∞

f(x
(k)
best) ≤ f

? + 5m2G2t/2

Note: mG can be viewed as Lipschitz constant for whole function∑m
i=1 fi, so this is comparable to batch bound

For diminishing step sizes, cyclic and randomized methods satisfy

lim
k→∞

f(x
(k)
best) = f?

1For randomized rule, results hold with probability 1
20

How about convergence rates? This is where things get interesting

Looking back carefully, the batch subgradient method rate was
O(G2

batch/ε
2), where Lipschitz constant Gbatch is for whole function

• Cyclic rule: iteration complexity is O(m3G2/ε2). Therefore
number of cycles needed is O(m2G2/ε2), comparable to batch

• Randomized rule2: iteration complexity is O(m2G2/ε2). Thus
number of random cycles needed is O(mG2/ε2), reduced by a
factor of m!

This is a convincing reason to use randomized stochastic methods,
for problems where m is big

2For randomized rule, result holds in expectation, i.e., bound is on expected
number of iterations

21

Example: stochastic logistic regression

Back to the logistic regression problem (now we’re talking SGD):

min
β

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β)

)
︸ ︷︷ ︸

fi(β)

The gradient computation ∇f(β) =
∑n

i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n ≈ 500 million. Recall:

• One batch update costs O(np)

• One stochastic update costs O(p)

So clearly, e.g., 10K stochastic steps are much more affordable

Also, we often take fixed step size for stochastic updates to be ≈ n
what we use for batch updates. (Why?)

22

The “classic picture”:

−20 −10 0 10 20

−
20

−
10

0
10

20

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●

●
●●

●●

●
●

●
●●

●●●

●●
●

●

●●●
●

●
●

●
●
●●

●

●
●●●

●●
●
●●

●● ●
●●●●●

●●●

●●*

●

●

Batch
Random

Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic
methods:

• generally thrive far
from optimum

• generally struggle close
to optimum

(Even more on stochastic methods later in the course ...)

23

Can we do better?

Upside of the subgradient method: broad applicability. Downside:
O(1/ε2) convergence rate over problem class of convex, Lipschitz
functions is really slow

Nonsmooth first-order methods: iterative methods updating x(k) in

x(0) + span{g(0), g(1), . . . g(k−1)}

where subgradients g(0), g(1), . . . g(k−1) come from weak oracle

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f? ≥ RG

2(1 +
√
k + 1)

24

Improving on the subgradient method

In words, we cannot do better than the O(1/ε2) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions h), we can recover the O(1/ε)
rate of gradient descent with a simple algorithm, having important
practical consequences

25

References and further reading

• D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

• S. Boyd, Lecture notes for EE 264B, Stanford University,
Spring 2010-2011

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

• B. Polyak (1987), “Introduction to optimization”, Chapter 5

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

26

