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21.1 Review of dual methods and Augmented Lagrangian method

21.1.1 Dual methods

Consider the problem,
min
x

f(x) subject to Ax = b

where f is strictly convex and closed. The lagrangian of the problem is

L(x, u) = f(x) + uT (Ax− b)

where u is the dual variable. Then dual gradient ascent repeats, for k = 1, 2, 3, ...

x(k) = argmin
x

L(x, u(k−1))

uk = u(k−1) + tk(Ax(k) − b)
Here tk is the step size in k-th iteration.

In dual method, the primal variable x is updated by minimize the Lagrangian, and the dual variable u is
updated by the way of gradient ascent, as Ax− b is the gradient of u.

The advantage of the dual method is that when f is decomposable, the update of x can be decomposed,
which means the problem can be easily parallelized or scalable. And the disadvantage is that it need stringent
assumptions to ensure convergence, i.e. f must be strong convex, because it is not clear the primal is feasible
without the assumptions.

21.1.2 Augmented Lagrangian method

Augmented Lagrangian method is also called method of multipliers. Compared to dual methods, it doesn’t
change the solution but improves the convergence property. Consider the modified problem, for a parameter
ρ > 0,

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

The lagrangian of the problem is

Lρ(x, u) = f(x) + uT (Ax− b) +
ρ

2
‖Ax− b‖22
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And the gradient ascent repeats, for k = 1, 2, 3, ...

x(k) = argmin
x

Lρ(x, u
(k−1))

uk = u(k−1) + ρ(Ax(k) − b)

The good point of the method is that it has better convergence properties than dual method in general. Because
the added term adds some smoothness of the problem. And the bad point is that it loses decomposability,
because the introduced term ρ

2‖Ax− b‖
2
2 is not decomposable.

21.2 Review of Alternating direction method of multipliers (ADMM)

21.2.1 Description of the algorithm

ADMM combines the best of both dual method and augumented Lagrangian method. Consider a problem of
the form:

min
x

f(x) + g(z) subject to Ax+Bz = c

We define augmented Lagrangian, for a parameter ρ > 0,

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

The updates are, for k = 1, 2, 3...

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

uk = u(k−1) + ρ(Ax(k) +Bz(k) − c)

In ADMM, instead of jointly update the primal variables x and z, it sequentially update x, z. That means
we use the more recent x i.e. x(k) instead of x(k−1) to update z, and the more recent x, z to update u.

21.2.2 Convergence Guarantees

Under modest assumptions on f , g, where A, B are not required to be full rank, the ADMM iterates satisfy,
for any ρ > 0:

• Residual convergence: r(k) = Ax(k) +Bz(k) − c→ 0 as k →∞, i.e., primal iterates approach feasibility.

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where f? + g? is the optimal primal objective value.

• Dual convergence: u(k) → u?, where u? is a dual solution.

The details for the convergence analysis is in Boyd et al. (2011) [BPCPE11]. And the primal convergence
cannot be get generically, but this is true under more assumptions.

Convergence rate of ADMM is not know in general and is currently being developed. Some papers, i.e., Hong
and Luo (2012) [HL12], Deng and Yin (2012) [DY16], Iutzeler et al. (2014) [IBCH14] Nishihara et al. (2015)
[NLRPJ15] showed some work for the convergence rate. It gets linear convergence when one of the f(x) or
g(x) is strongly convex. Roughly, ADMM behaves like a first-order method or a bit better.
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21.2.3 ADMM in scaled form

Beside the original ADMM algorithm, we can also express the ADMM algorithm in a scaled form, where the
dual variable u is replaced by a scaled variable w = u/ρ. After parametrization, the ADMM steps are:

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

wk = w(k−1) +Ax(k) +Bz(k) − c

Here w(k) can be treated as the running sum of residuals with the expression:

w(k) = w(0) +

k∑
i=1

(Ax(i) +Bz(i) − c)

21.3 Connection to proximal operators

Consider the problem
min
x

f(x) + g(x)

It is equivalent to
min
x,z

f(x) + g(z) subject to x = z

ADMM steps here are
x(k) = proxf,1/ρ(z

k−1 − w(k−1))

z(k) = proxg,1/ρ(x
k + w(k−1))

wk = w(k−1) + x(k) − z(k)

Where proxf,1/ρ and proxf,1/ρ are the proximal operator at parameter 1/ρ for f and g respectively.

The steps can be easily derived as follows:

Let x+, z+ and w+ represented as the one step update of x, z and w. By the general formula of ADMM
update, we have:

x+ = argmin
x

f(x) +
ρ

2
‖x− z + w‖22

= argmin
x

1

2 · 1/ρ
‖(z − w)− z‖22 + f(x)

= proxf,1/ρ(z − w)

Similarly, we can easily derive

z+ = argmin
z

g(z) +
ρ

2
‖x+ − z + w‖22

= argmin
z

1

2 · 1/ρ
‖(x+ + w)− z‖22 + g(z)

= proxg,1/ρ(x
+ + w)
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And then
w+ = w + x+ − z+

In general, the update for block of variables reduces to prox update whenever the corresponding linear
transformation is the identity.

21.4 Examples: Lasso regression and group lasso Regression

21.4.1 Lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

In previous classes and homework, we’ve known how to solve lasso problems in multiple ways such as proximal
gradient descent (ISTA), accelerated proximal gradient descent (FISTA), barrier method and primal-dual
interior-point method. Like deriving duals, how you set up the auxiliary variables is going to affect the
algorithm. Among different choices for how to introduce the auxiliary variables, the following form is in some
sense the most efficient option.
We can rewrite the problem as:

min
β,α

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to β − α = 0

The ADMM updates can be derived as follows:

β+ = argmin
β

1

2
‖y −Xβ‖22 +

ρ

2
‖β − α+ w‖22 (quadratic in β)

= (XTX + ρI)−1(XT y + ρ(α− w)) (set gradient equals to zero and solve for β)

α+ = argmin
α

λ‖α‖1 +
ρ

2
‖β+ − α+ w‖22

= Sλ/ρ(β
+ + w) (Soft-thresholding of β+ + w)

w+ = w + β+ − α+

Notes:

• The matrix XTX + ρI is always invertible, regardless of X.

• If we compute a factorization (say Cholesky) in O(p3) flops, then each β update takes O(p2) flops.

• The α update applies the soft-thresholding operator St, defined as

[St(x)]j =

 xj − t x > t
0 −t ≤ x ≤ t, j = 1, . . . p
xj + t x < −t

which is cheap in O(p).
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• ADMM steps are “almost” like repeated soft-thresholding of ridge regression coefficients.

• Different values of ρ can give different results.

In Fig. 21.1, we’re comparing the convergence behaviors of various algorithms for lasso regression. One thing
to notice is that all these algorithms have the same computational complexity per iteration. What can be
seen is that ADMM is actually fairly close to proximal gradient descent for this problem in the sense that it’s
converging at a very similar rate as compared to proximal gradient descent. Accelerated proximal gradient
descent is a little faster with the characteristic “Nesterov ripples”. Different values of ρ result in different
convergence behaviors. Coordinate descent uses a lot more information of the problem and is much faster
than all other methods for this problem. One drawback is that it’s not always applicable. More details about
coordinate descent will be covered in the upcoming lecture.

Figure 21.1: Comparison of various algorithms for lasso regression (50 instances with n = 100, p = 20, the
dark lines are the average convergence curves).

In practice, ADMM usually obtains a relatively accurate solution in a handful of iterations, but it requires
a large number of iterations for a highly accurate solution (generally behaves like a first-order method).
The choice of ρ can greatly influence practical convergence of ADMM. If ρ is too large, there’s not enough
emphasis on minimizing f + g. On the other hand, if ρ is too small, there’s not enough emphasis on feasibility.
Thus, it’s not always a good idea to take a too huge or too tiny ρ in any given problem. Boyd et al. (2011)
[BPCPE] give a strategy for varying ρ basically adaptively. At each iteration, you check something like the
primal residual and the dual residual, essentially corresponding to how well you are doing on minimizing
the criterion and how well you are doing at getting feasibility preliminaries and adjust for ρ accordingly.
This strategy can be useful, however, it does not have convergence guarantees. Besides, like deriving duals,
transforming a problem into one that ADMM can handle is sometimes a bit subtle, since different forms can
lead to different algorithms.
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21.4.2 Group lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the group lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖β(g)‖2

Similar to the lass problem, we can rewrite the problem as

min
β,α

1

2
‖y −Xβ‖22 + λ

G∑
g=1

cg‖α(g)‖2 subject to β − α = 0

The ADMM steps are

β+ = (XTX + ρI)−1(XT y + ρ(α− w)) (like the form of ridge regression)

α+
(g) = Rcgλ/ρ(β

+
(g) + w(g)) g = 1, . . . G

w+ = w + β+ − α+

Notes:

• The matrix XTX + ρI is always invertible, regardless of X.

• If we compute a factorization (say Cholesky) in O(p3) flops, then each β update takes O(p2) flops.

• The α update applies the group soft-thresholding operator Rt, defined as

Rt(x) =

(
1− t

‖x‖2

)
+

x

• Similar ADMM steps follow for a sum of arbitrary norms of as regularizer, provided we know prox
operator of each norm.

• ADMM algorithm can be rederived when groups have overlap, which in general is a very hard problem
to optimize. (Boyd et al. (2011) [BPCPE]).

21.5 Examples: Sparse subspace estimation and sparse plus low
rank decomposition

21.5.1 Sparse subspace estimation

Given S = XTX where X ∈ Rn×p, recall the problem of finding a projection matrix so that the different
between the original X and the projected X is as small as possible, which can be formalized as

min
P
‖X −XP‖2F subject to rank(P ) = k where P is a projection matrix

This problem is a non-convex problem since the space of the projection matrices is not a convex set. As
explained previously, it is equivalent to PCA because the solution is to do an eigendecomposition of XTX
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and take the first k eigenvectors.
This non-convex problem, however, is equivalent to the following convex problem

max
Y

tr(SY ) subject to Y ∈ Fk = {Y : 0 � Y � I, tr(Y ) = k}

which is often called as the subspace estimation problem.

Vu et al.(2013) [VCLR13] consider the sparse version of subspace estimation problem (a convex problem)

max
Y

tr(SY )− λ‖Y ‖1 subject to Y ∈ Fk

where Fk is the Fantope of order k, namely

Fk = {Y ∈ Sp : 0 � Y � I, tr(Y ) = k}

Note that when λ = 0, the above problem is equivalent to ordinary PCA.

The above problem is an SDP and in principle is solvable with interior point methods, though these can be
complicated to implement and quite slow for large problem sizes.

To solve the problem in ADMM algorithm, we rewrite the problem as:

min
Y,Z
−tr(SY ) + IFk

(Y ) + λ‖Z‖1 subject to Y = Z

Then the ADMM steps are as follows:

Y + = argmin
Y

−tr(SY ) + IFk
(Y ) +

ρ

2
‖Y − Z +W‖2F

= argmin
Y ∈Fk

1

2
‖Y − Z +W − S/ρ‖2F

= PFk
(Z −W + S/ρ)

Z+ = argmin
Z

λ‖Z‖1 +
ρ

2
‖Y + − Z +W‖2F

= Sλ/ρ(Y
+ +W )

W+ = W + Y + − Z+

Here PFk
is Fantope projection operator, computed by clipping the eigendecomposition A = UΣUT ,

Σ =diag(σ1, . . . , σp):
PFk

(A) = UΣθU
T , Σθ = diag(σ1(θ), . . . , σp(θ))

where each σi(θ) = min{max{σi − θ, 0}, 1}, and
∑p
i=1 σi(θ) = k.

21.5.2 Sparse plus low rank decomposition

Given M ∈ Rn×m, consider the sparse plus low rank decomposition problem (Candes et al., 2009) [CLMW09]:

min
L,S
‖L‖tr + λ‖S‖1 subject to L+ S = M
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Here, the goal of the problem is to decompose the observed matrix M into a low rank matrix L and a sparse
matrix S. In the above formed convex optimization problem, the trace penalty on L, the sum of the singular
values of matrix L, forces a convex relaxation of the rank function applied on L, and the `1 norm on S
induces sparsity of matrix S. λ is the tuning parameter to trade off the importance of low rankness of L and
the sparsity in S. Neither the trace norm nor the `1 norm is smooth, and trace norm is quite complicated as
a penalty. Although this problem is actually a SDP and can be solved using interior point methods, it is
extremely expensive and complicated. ADMM, on the other hand, offers a rather simple algorithm, and the
update steps are as follows:

L+ = Str1/ρ(M − S +W )

S+ = S`1λ/ρ(M − L
+ +W )

W+ = W +M − L+ − S+

here, we use Str1/ρ for matrix soft-thresholding and S`1λ/ρ for elementwise soft-thresholding.

Figure 21.2 shows a neat application of sparse plus low rank decomposition in parsing surveillance video clips.
From many video frames coming from a surveillance camera, it is possible to decompose each frame into
a low rank part, which encodes commonalities shared between all frames, and a sparse part, which carries
characteristic features corresponding to this particular frame. For example, three original frames are shown
on the left column in Figure 21.2, and after the decomposition, the corresponding low rank parts are shown
in the middle column, and the sparse parts are shown in the right column. While the low rank parts are
composed of background information in all of the frames, each of the sparse parts captures the appearance of
noticeable figures that are specific to the frame. Across a long run of surveillance camera, the appearance of
certain figures are clearly sparse and so may be extracted out using this technique.

21.6 Consensus ADMM

21.6.1 Consensus ADMM

Consider a problem of the form:

min
x

B∑
i=1

fi(x)

To formulate the corresponding ADMM updates we must introduce constraints, in a way that the updates
are easy to parallel. The consensus ADMM approach begins by reparametrizing:

min
x1,...xB ,x

B∑
i=1

fi(xi) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM steps:

x
(k)
i = argmin

xi

fi(xi) +
ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . B (parallel)

x(k) =
1

B

B∑
i=1

(
x

(k)
i + w

(k−1)
i

)
(simple average)

w
(k)
i = w

(k−1)
i + x

(k)
i − x

(k), i = 1, . . . B (as usual)
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Figure 21.2: Applications of sparse plus low rank decomposition on video frames (blind deconvolu-
tion) [CLMW09]

An additional trick is to write x̄ = 1
B

∑B
i=1 xi and w̄ = 1

B

∑B
i=1 wi. It is not hard to see that w̄(k) = 0 for all

iterations k ≥ 1. As a result, the second ADMM update is equivalent to x(k) = x̄(k), and hence ADMM steps
can be simplified into:

x
(k)
i = argmin

xi

fi(xi) +
ρ

2
‖xi − x̄(k−1) + w

(k−1)
i ‖22, i = 1, . . . B,

w
(k)
i = w

(k−1)
i + x

(k)
i − x̄

(k), i = 1, . . . B.

To reiterate, the xi, i = 1, . . . B updates here are done in parallel

The intuition behind consensus ADMM is the following. It tries to minimize each fi(xi), use (squared) `2
regularization to pull each xi towards the average x̄. If a variable xi is bigger than the average, then wi is
increased. So the regularization in the next step pulls xi even closer.

21.6.2 General consensus ADMM with regularization

Consensus ADMM can actually be made more general, for problems with an affine transform on x and an
arbitrary regularizer g. Consider a problem of the form:

min
x

B∑
i=1

fi(a
T
i x+ bi) + g(x)
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For consensus ADMM, we again reparametrize:

min
x1,...xB ,x

B∑
i=1

fi(a
T
i x+ bi) + g(x) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM updates:

x
(k)
i = argmin

xi

fi(a
T
i x+ bi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . B

x(k) = argmin
x

Bρ

2
‖x− x̄(k) − w̄(k−1)‖22 + g(x)

w
(k)
i = w

(k−1)
i + x

(k)
i − x

(k), i = 1, . . . B

Properties of generalized consensus ADMM and its difference compared with consensus ADMM may be
summarized as the following. First, it is no longer true that w̄(k) = 0 at a general iteration k, and unfortunately
ADMM steps do not simplify as before. However, the xi, i = 1, . . . B updates are still done in parallel.
Second, for generalized consensus ADMM, each xi update can be thought of as a loss minimization on part
of the data, with `2 regularization. The x update is a proximal operation in regularizer g. The w update
drives the individual variables into consensus. Last, a different initial reparametrization will give rise to a
different ADMM algorithm.

Please see Boyd et al. (2011) [BPCPE11], Parikh and Boyd (2013) [NB13] for more details on consensus
ADMM, strategies for splitting up into subproblems, and implementation tips.

21.7 Faster convergence with subprogram parametrization: exam-
ple of the 2d fused lasso problem

An interesting property of ADMM is that it can exhibit much faster convergence than usual, when we
parametrize subproblems in a “special way”. ADMM updates relate closely to block coordinate descent, in
which we optimize a criterion in an alternating fashion across blocks of variables. With this in mind, it is
possible to get significantly faster convergence when minimizing over blocks of variables leads to updates in
nearly orthogonal directions. As being shown in the following example, ADMM form (auxiliary constraints)
can be designed in a way that the primal updates de-correlate as best as possible. This is done in, e.g.,
Ramdas and Tibshirani (2014) [RT14], Wytock et al. (2014) [WSK14], Barbero and Sra (2014) [BS14].

21.7.1 Problem statement

Given an image Y ∈ Rd×d, recall the 2d fused lasso or 2d total variation denoising problem, in its matrix
form:

min
Θ

1

2
‖Y −Θ‖2F + λ

∑
i,j

(
|Θi,j −Θi+1,j |+ |Θi,j −Θi,j+1|

)
,

where we have a parameter for each pixel in the image and the parameter matrix is represented as Θ ∈ Rd×d.
Figure 21.3 illustrates the penalty terms in this minimization problem, where every pair of horizontally or
vertically neighboring pixels introduces a penalty. The intuition behind is that a lot of neighboring pixels
should be assigned to the same value, in order to avoid fusions in both the horizontal and vertical directions.
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Figure 21.3: Interpretation of the penalty term in 2d fused lasso.

Equivalently, the 2d fused lasso problem may be stated as the following vector form, with y ∈ Rn:

min
θ

1

2
‖y − θ‖2F + λ‖Dθ‖1.

Here D ∈ Rm×n is a 2d difference operator giving the appropriate differences (across horizontally and
vertically adjacent positions).

21.7.2 Forms of ADMM updates for the 2d fused lasso problem

The first way to setup ADMM is to follow its vector form:

min
θ,z

1

2
‖y − θ‖22 + λ‖z‖1 subject to z = Dθ,

which leads to the following ADMM steps:

θ(k) = (I + ρDTD)−1
(
y + ρDT (z(k−1) + w(k−1))

)
,

z(k) = Sλ/ρ(Dθ
(k) − w(k−1)),

w(k) = w(k−1) + z(k−1) −Dθ(k).

The vector form ADMM updates achieves O(n) time complexity, for the following reasons. On one hand, the
θ update solves linear system in I + ρL, with L = DTD the graph Laplacian matrix of the 2d grid, so this can
be done efficiently, in roughly O(n) operations. On the other hand, The z update applies soft thresholding
operator St. Hence, one entire ADMM cycle uses roughly O(n) operations.

The second way to setup ADMM comes from its matrix form:

min
Θ,Z

1

2
‖Y −Θ‖2F + λ

∑
i,j

(
|Θi,j −Θi+1,j |+ |Zi,j − Zi,j+1|

)
subject to Θ = Z
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which leads to ADMM steps:

Θ
(k)
·,j = FL1d

λ/(1+ρ)

(
Y + ρ(Z

(k−1)
·,j −W (k−1)

·,j )

1 + ρ

)
, j = 1, . . . , d

Z
(k)
i,· = FL1d

λ/ρ(Θ
(k)
i,· +W

(k−1)
i,· ), i = 1, . . . , d

W (k) = W (k−1) + Θ(k) − Z(k−1)

The matrix form ADMM updates also achieves O(n) time complexity. Both Θ, Z updates solve (sequence of)
1d fused lassos, where we write FL1d

τ (a) = argminx
1
2‖a− x‖

2
2 + τ

∑d−1
i=1 |xi − xi+1|. On critical observations

is that each 1d fused lasso solution can be computed exactly in O(d) operations with specialized algorithms
(e.g., Johnson, 2013; Davies and Kovac, 2001 [DK01]). As a result, one entire ADMM cycle again uses O(n)
operations.

Figure 21.4 provides a practical view on the matrix form ADMM updates. Note that in the penalty terms, Θ
corresponds to all the vertical penalties, and Z corresponds to all the horizontal penalties. The matrix form
ADMM update operates on Θ and Z alternatively. In this way, both the Θ update and the Z update can be
decomposed into a bunch of separate 1d fused lasso problems (corresponding to rows/columns of the image),
where each 1d fused lasso can be solved efficiently in linear time. Therefore, a full ADMM cycle also uses
O(n) operations. Interestingly, the Θ update and Z update actually pushes the θ variable in the vector form
in opposite directions, and so achieves a much higher convergence rate.

Figure 21.4: Interpretation of the matrix form ADMM updates for 2d fused lasso.

21.7.3 Image denoising experiments

Figure 21.5 shows the image to denoise and the exact solution of the denoised image.

Figure 21.6 shows the difference in terms of convergence properties for the two forms of ADMM updates.
The “specialized” ADMM, which decomposes updates into vertical/horizontal strips, achieves a much higher
convergence rate compared with the “standard” ADMM.

Figure 21.7 shows the image quality after certain ADMM steps. It is quite obvious that the “specialized”
ADMM updates approaches the exact solution much faster, compared with the “standard” ADMM updates.
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Figure 21.5: Comparison of 2d fused lasso algorithms: an image of dimension 300 × 200 (so n = 60, 000).
Left: the original image before denoising. Right: the exact solution of the denoised image.

Figure 21.6: Convergence curves of two ADMM algorithms. “standard” corresponds to the vector form
ADMM updates, and “specialized” corresponds to the matrix form updates.
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Figure 21.7: ADMM iterates visualized after k = 10, 30, 50, 100 iterations.
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