
10-725/36-725: Convex Optimization Fall 2015

Lecture 1: January 12
Lecturer: Ryan Tibshirani Scribes: Seo-Jin Bang, Prabhat KC, Josue Orellana

1.1 Review

We begin by going through some examples and key properties of convex functions we discussed in the last
lecture Convexity I: Sets and functions, Aug 31. In the review section, only the important examples and
properties that the instructor mentioned again would be scribed.

1.1.1 Examples of Convex Functions

We start to go over examples of convex function we mentioned last time.

• Convexity of univariate functions such as Exponential function, Power function, Logarithmic func-
tion can be checked easily by drowing the functions.

• Affine function (aTx+ b) is both convex and concave.

• Quadratic function 1
2x

TQx+bTx+c is convex provided that Q � 0 (i.e. positive semidefinite) Using
the second-order characteristic of convexity, it can be derived easily.

• Least squares loss is always convex because ‖y − Ax‖22 is a type of the quadratic function having
Q = ATA and ATA is always positive semidefinite.

• Every norm is convex including operator (spectral) and trace (nuclear) norms. The proof can be done
by using the definition of convexity. Operator norm is the largest singular value of matrix X. It also
has basic properties of norm such as theh triangle inequality.

• Convexity of indicator function provided that C, support function, max function can be
checked from the definition of the convexity.

1.1.2 Key properties of convex functions

In this section, we go over the key properties of convex functions.

• Epigraph characterization: epi(f) is a set of every points that lie on above the function f :

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

A function f is convex if and only if its epigraph epi(f) is a convex set. It is useful properties because
we can derive convexity of a function from convexity of a set.

• Convex sublevel sets: a sublevel set of a function f is a set of points in domain of f such that its
value f(x) is not larger than any fixed point t ∈ R:

{x ∈ dom(f) : f(x) ≤ t}
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If function f is convex, then its sublevel sets are convex for any choice of t. Note that the conver is not
true. The counter example is f(x) =

√
|x|. When it sublevel sets are convex, we call f quasiconvex

function.

• First-order characterization: if a function is differentiable, then f is convex if and only if its domain
is convex and satisfies a condition such that:

f(y) ≥ f(x) +∇f(x)T (y − x)

for all points x and y in its domain. We can understand the property easily through an one dimensional
funciton f(x) = x2:

Figure 1.1: Illustration of the first-order condition
for convexity. http://funktor.github.io/2015/07/
03/Convex-Optimization/

We can drow a tangent line at any fixed point x such that g(y) = f(x) +∇f(x)T (y− x). The tangent
line always lies below the convex function. Therefore, f(y) ≥ g(y) = f(x) +∇f(x)T (y − x).

The first-order characterizaiton of strict convexity of a function f can be seen similar way: if a cuntion
is differentiable, then f is strictly convex if and only if

f(y) > f(x) +∇f(x)T (y − x)

• Second-order characterization: if a function is twice differentiable, then f is convex if and only if
its domain is convex and satisfies a condition such that:

∇2(f) � 0

for all points x in its domain.

If a function f is strictly convex, then ∇2(f) � 0 (positive definite). However the converse is not
true. An counter example is f(x) = x2. It is strictly convex but it has zero second derivative (i.e.
f

′′
(0) = 0)

• Nonnegative linear combination of convex functions is convex.

• Pointwise maximization: If we define a new function f(x) at x as the maximum value of (countable
infinite) convex functions at x, f is convex. It implies that we can always maximize a bunch of functios
in pointwise fashion.

• Partial minimization If g(x, y) is convex in x and y and C is a convex set, then partially minimized
function on any variable over the convex set C, i.e. f(x) = miny∈C g(x, y) and f(y) = minx∈C g(x, y),
is convex.

http://funktor.github.io/2015/07/03/Convex-Optimization/
http://funktor.github.io/2015/07/03/Convex-Optimization/
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1.1.3 More operations preserving convexity

This section we go over examples of composition of functions that preserves convexity. some examples of
composition

• Affine composition in a convex function f is always convex. That is, if f is convex, then g(x) =
f(Ax+ b) is convex.

• General composision is about convexity of f(x) = h(g(x)) when the outside function h : R → R is
monotone and the inside function g : Rn → R is convex/concave:

f is convex if h is convex and nondecreasing, g is convex

f is convex if h is convex and nonincreasing, g is concave

f is concave if h is convex and nondecreasing, g is concave

f is concave if h is convex and nonincreasing, g is convex

• Vector composition is similar manner with the general composition in pointwise fashion.

1.1.4 Example: log-sum-exp function

Log-sum-exp function is:

g(x) = log

(
k∑
i=1

exp(aTi x+ bi)

)
for fixed ai and bi. It is a nice example of convex function which convexity can be shown by the operations
preserving convexity.

Since affine composition preserves convexity, it is enough to show f(x) = log
(∑k

i=1 exp(xi)
)

. Using the

second-order characteristic of f(x) we can show the convexity of g(x).

1.1.5 Is max
{
log
(

1
(aTx+b)7

)
, ‖Ax+ b‖51

}
convex?

We will make use of operations that preserve convexity to determine the curvature of following function

max

{
log

(
1

(aTx+ b)7

)
, ||Ax+ b||51

}
.

We begin by realizing that (aTx + b) and Ax + b are affines and so are convex functions. Accordingly, the
problem can be reformulated as determining the convexity of the problem, max

{
−7 log(x), ||y||51

}
. Here, log

is concave function and so -7log becomes convex. Likewise, norm is convex function and so norm raised to
power of 5 is convex. Finally, the fact that maximum of convex functions is convex deduces that the given
problem is, indeed, a convex function.

This lecture will comprise of following topics:

• Optimization terminology

• Properties and first-order optimality

• Equivalent transformations



1-4 Lecture 1: January 12

1.2 Optimization terminology

We begin by defining a convex optimization problem (or program) as follows:

min
xεD

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where objective (or criterion) function, f , and inequality constraint functions, gi, are all convex. Likewise,
the equality constraint is linear. Also, we do not often discuss this but it is implicitly implied that the
domain is D = dom(f) ∩

⋂m
i=1 dom(gi).

Furthermore, any x that satisfies all the constraints of the optimization problem is called a feasible point.
The minimum of our criterion, f(x), over all feasible points, x, is called the optimal value, f?. Likewise, if
x?εx s.t. f(x?) = f?, then x? is called optimal or a solution. Next, a feasible point, x, is called ε−suboptimal,
if it has the property f(x) ≤ f?+ε. Similarly, if x is feasible and gi(x) = 0, then we say that gi is active at x.
In contrast, if gi(x) < 0, then we say gi is inactive at x. Finally, any convex minimization can be reposed as
concave maximization. This is primarily owing to the fact that minimizing f(x) subject to some constraints
is equivalent to maximizing -f(x) over the same constraint, in the sense that they both have same solution.

1.3 Convex solution set

Consider Xopt to be the set of all solutions of a convex problem. Then it can be expressed as:

Xopt = argmin f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Here, we can quickly check the convexity of Xopt by considering two solutions x, y. Then for 0 ≤ t ≤ 1,
tx+ (1− y)yεD. Likewise, the two solutions satisfy inequality and equality constraints. Next,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) = tf? + (1− t)f? = f?.

Hence, tx + (1 − t)y is also a solution and Xopt is a convex set. This outcome is due to the property of
convex functions that their solutions are convex. However, as mentioned in previous lectures, just because
Xopt is a convex set, does not mean that it is unique. This is to say that, even though a local solution is also
globally minimum, there could still be multiple solutions to a convex optimization problem. In particular,
these optimization problems may have 0, 1 or infinitely many solutions. One obtains a unique solution if f
is strictly convex.

Some of the examples of convex optimization problem include:

1.3.1 Lasso

Lasso is a common problem that people look at in machine learning and statistics. Basically, it is a regression
problem. Given yεRn, and XεRn×p, a lasso problem can be formulated as:
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min
β
||y −Xβ||22

subject to ||β||1 ≤ s

Lasso is a convex optimization problem because the objective function is a least squared loss which is convex
and the constraint is a norm minus a constant which in itself is convex. Moreover, the problem has only
inequality, gi(β) = ||β||1 − s, and no equality constraint. The feasible set is βεRp that satisfy the L1-norm
bound (or L1 ball) of |β||1 ≤ s.

• n ≥ p and X has full column rank

Here, ∇2f(β) = 2XTX. Given that X is a full rank ⇒ XTX is invertible ⇒ XTX is positive definite.
Hence, ∇2f(β) � 0 and so the solution in this case is unique because strictly convex functions have
only one solution.

• p > n (high-dimension) case.

In this case, XTX is singular. Then f(β) = βTXTXβ − 2yTXβ + yT y and for some β 6= 0 and
Xβ = 0, we get βTXTXβ = 0. This would mean that the function, f(β), is linear. Thus, we get
multiple solutions and cannot guarantee a unique solution. However, later in the course, we will see
that in most cases where n > p, we still get unique solution with lasso.

If a function f is strictly convex, that implies uniqueness, otherwise we cannot say anything about uniqueness.
But we can still evaluate the particular circumstances of a problem on a case by case basis.

1.3.2 Example: support vector machines

This is a way to produce a linear classification function. Linear in the sense that the decision boundary is
still linear in the variables.

Given labels y ∈ {−1, 1}n, and features X ∈ Rnxp with rows x1, ..., xn

There is really only two variables (β and ξ). The intercept β0 is a single dimensional parameter. C is a
chosen constant.

Here is the SVM criterion:

min
β,β0,ξ

1

2
‖β‖22 + CΣni=1ξi (1.1)

subject to the following constraints

ξi ≥ 0, i = 1, ..., n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, ..., n

This problem is convex because the criterion is just a quadratic plus a linear function. We can also rewrite
the constrain −ξi ≤ 0 which is affine and a convex function. In the same way we can rewrite the full
inequality constrain as −yi(xTi β + β0) + 1− ξi ≤ 0.

This problem is not strictly convex because the criterion is a linear function of ξ’s. Thus based on what
we know so far, we cannot say anything about uniqueness.

Special case: If we fix all of the other variables, and only treat the component β, which determines the
hyperplane, then the criterion is strictly convex. The criterion becomes just the squared error loss, and strict
convexity implies uniqueness.
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1.3.3 Rewriting constraints

Consider this optimization problem
min
x

f(x) (1.2)

subject to gi(x) ≤ 0, i = 1, ...,m and Ax = b

Without loss of generality, the constraints can be encapsulated into a set C.

subject to x ∈ C. Where C = {x : gi(x) ≤ 0, i = 1, ...,m,Ax = b}, the feasible set.

Saying that x ∈ C is therefore equivalent to saying that all of the constraints described in C are met.
Furthermore we can use IC as the indicator of C to rewrite the problem as:

min
x

f(x) + IC(x) (1.3)

The indicator function IC is 0 when x ∈ C and infinity when x /∈ C. When C is convex, this is going to be
a convex function. Using the definitions from convex functions, if gi(x) is convex, then gi(x) ≤ 0 is a convex
set because it is a sub level of a convex function. An intersection of convex sets is created when we assert
that gi(x) ≤ 0 must be true for all i = 1, ...,m. Intersection is also an operation that preserves convexity for
sets. Thus C is a convex set made out of convex constraints.

C = ∩mi=1{x : gi(x) ≤ 0} ∩ {x : Ax = b} (1.4)

1.3.4 First-order optimality

First-order optimality is a necessary and sufficient condition for convex functions. The statement is similar
for convex problems.

min
x

f(x) (1.5)

subject to x ∈ C

Let f be differentiable (smooth), then a feasible point x is optimal if and only if:

∇f(x)T (y − x) ≥ 0 (1.6)

for all y ∈ C

All feasible directions from x are aligned with the gradient ∇f(x)

Interpretation: Assume you are at a feasible point x, and you are thinking of moving to a feasible point
y. Then if the gradient is aligned with the vector from x to y, the function should increase because you are
going in the direction in which the gradient is increasing. If that is true for all feasible points y, then the
point x must be the solution.

Special case: C = Rn. This is the case of unconstrained optimization, in which we are just trying
to minimize a convex smooth function f . The solution must be at the point where the gradient is zero
∇f(x) = 0 .

1.3.5 Example: quadratic minimization

Consider minimizing:

f(x) =
1

2
xTQx+ bTx+ c (1.7)
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Where Q � 0. The first order condition says that the solution satisfies:

∇f(x) = Qx+ b = 0 (1.8)

There are 3 possible solutions which depend on Q:

• if Q � 0, i.e. positive definite, then there is a unique solution at x = −Q−1b

• if Q is singular, i.e. not invertible, and b /∈ col(Q), then there is no solution.

• if Q is singular, i.e. not invertible, and b ∈ col(Q), then there are infinitely many solutions of the
form x = Q+b+ z where z ∈ null(Q) and Q+ is a pseudo-inverse of Q

1.3.6 Example: equality-constrained minimization

Consider minimizing the equality constrained convex problem:

min
x

f(x) (1.9)

subject to Ax = b with f being differentiable.

We can write a Lagrange multiplier optimality condition

∇f(x) +ATu = 0 (1.10)

for some u.

We will come back to this derivation when we cover topics in duality. For now we can state how to prove
this according to first order optimality. The solutions x satisfies Ax = b

∇f(x)T (y − x) ≥ 0 (1.11)

for all y such that Ay = b

Because null(A)⊥ = row(A). This is equivalent to

∇f(x)T v = 0 (1.12)

for all v ∈ null(A)

1.3.7 Partial optimization

We can always partially optimize a convex problem and retain convexity.

This stands on the fact that we can always partially minimize a function over some of its variables as long
as the set being minimized is convex. Formally: g(x) = miny∈Cf(x, y) is convex in x, provided that f is
convex in (x, y) and C is a convex set.

For example, if we decompose x = (x1, x2) ∈ Rn1+n2 , then

min
x1,x2

f(x1, x2) (1.13)

subject to g1(x1) ≤ 0 and g2(x2) ≤ 0
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Partially we can also
min
x1

f̃(x1) (1.14)

subject to g1(x1) ≤ 0 where f̃(x1) = min{f(x1, x2) : g2(x2) ≤ 0}

The second problem is convex if the first problem is convex.

1.3.8 Example: hinge form of SVMs

Refer to the optimization problem given in a previous section of this lecture.

Let us rewrite the constrains as 0 ≤ ξi, and 1−yi(xTi β+β0) ≤ ξi or equivalenty ξi ≥ max{0, 1−yi(xTi β+β0)}.
We can argue that this inequality is exactly larger during optimization, and exactly equal only at the
solution. This means we can eliminate ξi because we have identified what it exactly is at the solution:
ξi = max{0, 1− yi(xTi β + β0)}.

Thus plugging in for optimal ξ we can rewrite the problem in its hinge form:

min
β,β0

1

2
‖β‖22 + CΣni=1[1− yi(xTi β + β0)]+ (1.15)

where a+ = max{0, a} is called the hinge function.

1.3.9 Transformations and change of variables

Transforming variables

If h : R→ R is a monotone increasing transformation, then

minx f(x) subject to x ∈ C ⇐⇒ minx h(f(x)) subject to x ∈ C

Similarly, inequality or equality constraints can be transformed and yield equivalent optimization problems.
Can use this to reveal the ”hidden” convexity of a problem. We do this often in statistics, when we optimize
the log likelihood instead of the likelihood because Log is monotonically increasing.

Changing variables

If φ : Rn → Rm is one to one, and its image covers feasible set C.

minx f(x) subject to x ∈ C ⇐⇒ miny f(φ(y)) subject to φ(y) ∈ C
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