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This lecture’s notes covers coordinate descent and screening rules.

Introduction

Coordinate descent is a very simple technique that can be surprisingly, efficient, scalable compare to some
pretty sophisticated methods we have learned. Appropriately it is also called coordinatewise minimization.

Motivation

To motivate the objective function we would like to deal with using coordinate descent, let’s consider these
questions first:

Q1: Does f(x + δei) ≥ f(x) for all δ, i =⇒ f(x) = minzf(z) (Here ei = (0, ..., 1, ...0), the i-th standard
basis vector) always hold ? In other words, given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, then have we found a global minimizer?

The answer is yes. Here is the proof:

f(x+ δei) ≥ f(x) =⇒ ∂f

∂xi
(x) = 0

, which means

∇f(x) = (
∂f

∂x1
(x), ...,

∂f

∂xn
(x)) = 0

. Then we get f(x) = minzf(z).

Q2: Same question, but f is convex, not differentiable ?

The answer is no. In figure 23.1 we can see that the whatever the cross-point goes any direction along the
axis, the criterion value will increase.

Q3: Same question again, but now f(x) = g(x) +
∑n
i=1 hi(xi), where g(x) is convex, differentiable and each

hi is just convex (Here the nonsmooth part is called separable) ?

23-1



23-2 Lecture 23: November 21

Figure 23.1: Counterexample of q2.

The answer is yes. Here is the proof: since g(x) is convex, differentiable, for any y, we have

f(y)−f(x) = g(y)+

n∑
i=1

hi(yi)−[g(x)+

n∑
i=1

hi(xi)] ≥ ∇g(x)T (y−x)+

n∑
i=1

[hi(yi)−hi(xi)] =

n∑
i=1

(∇ig(x)(yi−xi)+hi(yi)−hi(xi))

. We now want to proof
∇ig(x)(yi − xi) + hi(yi)− hi(xi) ≥ 0

. Consider
fi(xi) = g(xi;x−i) + hi(xi)

(here x−i means all xj , j 6= i is constant now).

f(x+ δei) ≥ f(x) =⇒ 0 ∈ ∂fi(xi) = ∇ig(x) + ∂hi(xi) =⇒ ∇ig(x) ∈ −∂hi(xi)

, then by definition of subgradient:

hi(yi) ≥ hi(xi)−∇ig(x)(yi − xi)

. Thus, we can conclude that for any y, f(y)− f(x) ≥ 0.

Update Rule

Q3 suggests that for f(x) = g(x) +
∑n
i=1 hi(xi), where g(x) is convex, differentiable and each hi is just

convex, we can use coordinate descent to find a minimizer: start with some initial guess x(0), and repeat:

x
(k)
1 ∈ arg min

x1

f(x1, x
(k−1)
2 , ..., x(k−1)n )

x
(k)
2 ∈ arg min

x2

f(x
(k)
1 , x2, ..., x

(k−1)
n )



Lecture 23: November 21 23-3

...

x(k)n ∈ arg min
xn

f(x
(k)
1 , x

(k)
2 , ..., xn)

for k = 1, 2, 3....

Here is several things worth to notice:

• The order of cycle through coordinates is arbitrary, we can use any permutation of 1, 2, ..., n. If only
we visit linear number of updates xi before going to update xj (eg. update 2n times, but cannot be
n2), the algorithm can converge.

• We can replace individual coordinates with blocks of coordinates in everywhere. We will see the
example in Box-constrained QP.

• ”One-at-a-time” update scheme is critical, and ”all-at-once” scheme does not necessarily converge. In

other words, after solving for x
(k)
i , we use its new value from then on.

• Coordinate descent can be the analogy for solving linear systems: Gauss-Seidel versus Jacobi method.
We can see the example in Linear Regression.

Example

Linear Regression

Given y ∈ Rn, and X ∈ Rn×p with columns X1, ..., Xn, consider linear regression:

min
β

1

2
||y −Xβ||22

We can perform coordinate descent by repeatedly minimize over βi for i = 1, 2, ..., p, 1, 2, .... Here βi can be
gotten by solving:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y)

=⇒ βi =
XT
i (y −X−iβ−i)

XT
i Xi

We can easily observe that this process is exactly solving the Gauss-Seidel system XTXβ = XT y.

We now compare the coordinate descent with gradient descent for linear regression: The result is in figure
23.2.

Someone may have such natural question for the comparison: Is it fair to compare 1 cycle of coordinate
descent to 1 iteration of gradient descent? The answer is yes, since they are both O(np) in each iteration:

For gradient descent, in each iteration, we compute β+ = β + tXT (y − Xβ), these matrix multiplication
results in O(np) flops.

For coordinate descent, in each iteration, for one coordinate update, we compute

βi =
XT
i (y −X−iβ−i)

XT
i Xi

=
XT
i (y −Xiβi)

XT
i Xi

+
XT
i Xiβi
XT
i Xi

=
XT
i r

||Xi||22
+ βi
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Figure 23.2: linear regression: 100 instances with n = 100, p = 20.

, where r = y − Xβ. Thus, each coordinate costs O(n) flops (O(n) to update r, O(n) to compute XT
i r).

Each iteration has p coordinate operation, so costs O(np), which is the same as gradient descent.

We now add accelerated gradient descent into the comparison, the results shows in figure 23.3. Note that
this doesn’t contradict with the optimality of accelerated gradient descent, as coordinate descent uses more
information than first-order method.

Lasso Regression

Given y ∈ Rn, and X ∈ Rn×p with columns X1, ..., Xn, consider lasso regression:

min
β

1

2
||y −Xβ||22 + λ||β||1

We can perform coordinate descent by repeatedly minimize over βi for i = 1, 2, ..., p, 1, 2, .... Here βi can be
gotten by solving:

0 = XT
i (Xiβi +X−iβ−i − y) + λsi

, where si ∈ ∂|βi|. Then by using soft-thresholding we get

βi = Sλ/||Xi||22
XT
i (y −X−iβ−i)

XT
i Xi

.

Figure 23.4 shows proximal gradient vs coordinate descent for lasso regression. The coordinate gradient
descent here is comparable to gradient descent for the same reason that they both share O(np) flops in each
iteration.
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Figure 23.3: Same example, but now with accelerated gradient descent for comparison.

Figure 23.4: lasso regression: 100 instances with n = 100, p = 20.
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Box-constrained QP

Given b ∈ Rn and Q ∈ Sn+, consider the following box-constrained quadratic programming:

min
x

1
2x

TQx+ bTx

subject to l ≤ x ≤ u

First we note that the constrained are coordinate-wise separable:

I{l ≤ x ≤ u} =

n∑
i=1

I{li ≤ xi ≤ ui}

This tells us we can use the coordinate descent to sequentially minimize the function over different coordinate,
the minimization is given by:

xi = T[li,ui](
bi −

∑
j 6=iQi,jxj

Qii
)

where T[li,ui] is the truncation (projection) operator onto [li, ui]:

T[li,ui](z) =


ui, if z¿ui

z, if li ≤ z ≤ ui
li, if z¡li

Support Vector Machine

Coordinate descent can be applied to SVM dual problem:

min
α

1
2α

T X̃X̃Tα− 1Tα

subject to 0 ≤ α ≤ C1
αT y = 0

Note that the constraint αT y = 0 is not coordinate-wise separable hence vanilla coordinate descent cannot be
used here. However, Platt proposed a sequential minimal optimization (SMO) algorithm, which is blockwise
coordinate descent in blocks of 2. Instead of cycling over blocks, it chooses the next block greedily. The
SMO algorithm utilizes the complementary slackness condition:

αi(1− ζi − (X̃β)i − yiβ0) = 0, i=1,...n

(C − αi)ζi = 0 i=1,...n

where β0, β, ζi are primal intercepts, coefficients and slack variables. β = X̃Tα and β0 is calculated using
any i s.t. 0 < αi < C,ζi is also calculated from the above two conditions. The SMO repeats the following
steps:

• Choose αi, αj that do not satisfy the complementary slackness condition greedily.

• Minimize over αi and αj exactly, keeping other variables fixed. Using equality constraint αT y = 0 to
reduce the problem into minimizing a quadratic function over one variable on an interval.

Many further developments on coordinate descent for SVMs have been made; e.g., a recent one is Hsiesh et
al. (2008)
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Coordinate descent in ML and Statistics

History:

• Idea appeared in Fu (1998), and again in Daubechies et al. (2004), but was inexplicably ignored.
(Students of Robert Tibshirani)

• Three papers around 2007, especially Friedman et al. (2007), really sparked interest in statistics and
ML communities (Work done with Robert Tibshirani)

Advantages of coordinate descent:

• Very simple and easy to implement

• Careful implementations can be near state-of-the-art

• Scalable, e.g., dont need to keep full data in memory

Examples of applications: lasso regression, lasso GLMs (under proximal Newton), SVMs, group lasso, graph-
ical lasso (applied to the dual), additive modeling, matrix completion, regression with nonconvex penalties.

Pathwise coordinate descent for Lasso

Friedman et al. proposed the pathwise coordinate descent method for Lasso problem. The pathwise coordi-
nate descent uses a similar method as central path, instead of solving the problem of given tuning parameter
λ, it minimizing over a sequence of tuning parameters λ1 > λ2 > ... > λr = λ and at for each λk+1 it uses
the solution from λk as a warm start. The algorithm takes two loops:

Outer loop(pathwise strategy):

• Compute the solution over a sequence λ1 > λ2 > ... > λr = λ of tuning parameter values

• For tuning parameter value λk, initialize coordinate descent algorithm at the computed solution for
λk+1 (warm start)

Inner loop (active set strategy):

• Perform one coordinate cycle (or small number of cycles), and record active set A of coecients that are
nonzero

• Cycle over coecients in A until convergence
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• Check KKT conditions over all coecients; if not all satised, add oending coecients to A, go back one step

Notes:

• Even when the solution is desired at only one , the pathwise strategy (solving over λ1 > λ2 > ...λr = λ)
is typically much more efficient than directly performing coordinate descent at λ, indeed this is what
many existing packages will do.

• Active set strategy takes advantage of sparsity; e.g., for very large problems, coordinate descent for
lasso is much faster than it is for ridge regression

• With these strategies in place (and a few more clever tricks), coordinate descent can be competitve
with fastest algorithms for L1 penalized minimization problems

• Fast Fortran implement glmnet, easily linked to R or MATLAB

Other versions of coordinate descent

People may use coordinate descent as name for the following algorithm, which is different to what we have
covered at the beginning of the class:

x
(k)
1 = x

(k−1)
1 − tk,1 · ∇1f(x

(k−1)
1 , x

(k−1)
2 , x

(k−1)
3 , ...x(k−1)n )

x
(k)
2 = x

(k−1)
2 − tk,2 · ∇2f(x

(k)
1 , x

(k−1)
2 , x

(k−1)
3 , ...x(k−1)n )

x
(k)
3 = x

(k−1)
3 − tk,3 · ∇3f(x

(k)
1 , x

(k)
2 , x

(k−1)
3 , ...x(k−1)n )

...

x(k)n = x(k−1)n − tk,n · ∇nf(x
(k)
1 , x

(k)
2 , x

(k)
3 , ...x(k−1)n )

If f = g+ h where g is smooth and h is separable, the proximal version of the above algorithm is also called
coordinate descent. These versions are generally easier to apply than the exact coordinate descent we talked
about at the beginning of the class, but the version we covered is performs an exact minimization and hence
makes more progress.

Convergence analysis

Empirically, optimized implementations of coordinate descent often give state of the art algorithms for many
problems. However, the theory for coordinate descent is still being developed. In particular, there are
still many unanswered questions, for example whether the coordinate-wise descent and exact minimization
strategies perform comparably. Below is a list of results on the convergence of coordinate descent. Warning:
some references below treat coordinatewise minimization, some do not.

• Convergence of coordinatewise minimization for solving linear systems, the Gauss-Seidel method, is a
classic topic. E.g., see Golub and van Loan (1996), or Ramdas (2014) for a modern twist that looks at
randomized coordinate descent
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• Nesterov (2010) considers randomized coordinate descent for smooth functions and shows that it
achieves a rate O(1/ε) under a Lipschitz gradient condition, and a rate O(log(1/ε)) under strong
convexity

• Richtarik and Takac (2011) extend and simplify these results, considering smooth plus separable func-
tions, where now each coordinate descent update applies a prox operation

• Saha and Tewari (2013) consider minimizing l1 regularized functions of the form g(β) + λ‖β‖1, for
smooth g, and study both cyclic coordinate descent and cyclic coordinatewise min. Under (very
strange) conditions on g, they show both methods dominate proximal gradient descent in iteration
progress

• Beck and Tetruashvili (2013) study cyclic coordinate descent for smooth functions in general. They
show that it achieves a rate O(1/ε) under a Lipschitz gradient condition, and a rate O(log(1/ε)) under
strong convexity. They also extend these results to a constrained setting with projections

• Nutini et al. (2015) analyze greedy coordinate descent (called Gauss-Southwell rule), and show it
achieves a faster rate than randomized coordinate descent for certain problems

• Wright (2015) provides some unification and a great summary. Also covers parallel versions (even
asynchronous ones)

Screening Rules Intuition

Consider the Lasso problem:

min
1

2
||y −Xβ||22 + λ|β|1

If we knew that some of the βis are 0 in the final solution, then we could get rid of the corresponding columns
Xi. This would make optimization a lot faster and more memory efficient. In general, finding all the βis
that are 0 requires solving the lasso problem. However, we can use screening rules to quickly identify some
of the βis that must be 0 in the final solution.

Screening rules are not restricted to lasso, they are used in all kinds of problems to whittle down the active
set.

SAFE Screening Rules

First, we define λmax:
λmax = ||XT y||∞

Then we get the following rule:

|XT
i y| < λ− ||Xi||2||y||2

λmax − λ
λmax

⇒ βi = 0

Note that this is not an if and only if statement - it only identifies some of the βis that are 0.
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To prove this rule, we start from the dual of the lasso. The dual objective function of the lasso is:

g(u) =
1

2
||y||22 −

1

2
||y − u||22

In the dual, we want to minimize g(u) subject to ||XTu||∞ ≤ λ.

We note that u0 = λ
λmax

y is dual feasible. This implies that γ = g(u0) is a lower bound for the dual optimal
value. So we can add the constraint g(u) ≥ γ to the dual problem, without changing the dual problem. In
general, adding this constraint does not add much value, but in this case it gives us something useful.

For each i between 1 and p, we compute,

mi = max |XT
i y| subject to g(u) ≥ γ

Then we get,
mi < λ⇒ |XT

i û| < λ

Using the stationarity KKT condition, this implies that βi = 0.

It remains to compute mi. Using another dual argument, we get that mi can be computed exactly.

mi = ||Xi||2
√
||y||22 − 2γ + |XT

i y|

Substituting in γ = g(u0), we get the SAFE rule.
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