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11.1 Lagrangian

Consider any general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r

Let’s define the Lagrangian, introducing variables u ∈ Rm, v ∈ Rr, with u ≥ 0.

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)

It turns out that for any u ≥ 0 and any v, we have that

L(x, u, v) = f(x)

m∑
i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑
j=1

vj lj(x)︸︷︷︸
=0

≤ f(x)

Thus, we can observe that the Lagrangian L(x, u, v) is always a lower bound for the primal criterion
f(x) for any value of u ≥ 0 and v. An example for this is shown in the figure 11.1.

And so, we have that if f∗ be the primal optimal value and C is the primal feasible set, then

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) , g(u, v)

This g(u, v) is the Lagrange dual function, and it provides a lower bound on the optimal value
f∗ for any dual feasible u, v (i.e. u ≥ 0 and any v).

Generally, duality will provide us with a tight lower bound in the convex case, but this need not
be the true in the non-convex case. One such example is shown in the figure 11.2, where the lower
bound is not tight.
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Figure 11.1: Solid line is f , dashed line is h. Each dotted line shows L(x, u, v) for different choices
of u ≥ 0 and v. Note that the feasible set is x ∈ [−0.46, 0.46]

11.1.1 Example: Quadratic Program

Consider a quadratic program where Q � 0:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

In this case, our Lagrangian is simply

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

To compute the dual function g(u, v) = minx L(x, u, v), we minimize the Lagrangian above by
taking the gradient with respect to x and setting it equal to zero, and we get that

x∗ = −Q−1(c− u+AT v)

=⇒ min
x
L(x, u, v) = L(x∗, u, v)

=
1

2
(c− u+AT v)TQ−1(c− u+AT v)− (c− u+AT v)TQ−1(c− u+AT v)− bT v

= −1

2
(c− u+AT v)TQ−1(c− u+AT v)− bT v

What if, instead, we had the same QP as above, except Q�0 (i.e. Q is only positive semi -definite).
Then, if we try to minimize the Lagrangian above by setting the gradient to 0, we get the following
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Figure 11.2: Dashed horizontal line is f∗, dual variable is λ and solid line shows g(λ)

constraint at the optimum:

Qx = −(c− u+AT v) (11.1)

Now, there are two cases:

(i) c − u + AT v ∈ col(Q). Then, we can use the pseudo-inverse (see below) Q† of Q. This also
implies that P

(
c− u+AT v

)
= 0, where P is the projection matrix onto null (Q).

(ii) c − u + AT v 6∈ col(Q), which implies that c − u + AT v is not orthogonal to the null space of
Q. Then, let

c− u+AT v = z1 + z2,

where z1 ∈ col(Q), z2 ∈ null(Q), z2 6= 0. But in this case, there is no x that satisfies eq. (11.1),
and so there is no unique minimizer x∗. But L(x, u, v) is quadratic in x, so if there is no
minimizer of L(x, u, v) in x, the minimum must be L(x, u, v) = −∞.

So,

g(u, v) =

{
− 1

2 (c− u+AT v)TQ†(c− u+AT v)− bT v case (i)

−∞ case (ii)

11.1.1.1 Aside: Pseudo-inverse

For a general matrix A ∈ Rn×n, we can define the pseudo-inverse A† in terms of its Singular Vector
Decomposition. Using SVD, we can write A as

A = UDV T
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If A was invertible, we can directly invert the decomposition above:

A−1 = (UDV T )−1 = (V T )−1D−1U−1 = V D−1UT

where

D−1 =


1
d1

0 . . . 0

0 1
d2

. . . 0

0 0
. . .

...
0 0 . . . 1

dn


If A is not invertible, we’re going to see that for k = rank(A), dk+1 = dk+2 = · · · = dn = 0. In this
case, we can construct a pseudo-inverse (D†) of D as follows:

D† =



1
d1

0 . . . 0 0 0 0

0 1
d2

. . . 0 0 0 0

0 0
. . .

... 0 0 0
0 0 . . . 1

dk
0 0 0

0 0 . . . 0 0 0 0

0 0 . . . 0 0
. . . 0

0 0 . . . 0 0 0 0


And our pseudo-inverse, then, is

A† = V D†UT

11.1.2 Example: Quadratic Program in 2D

In this example, we choose f(x) to be quadratic in 2 variables, subject to x ≥ 0. The dual function
g(u) is also quadratic in 2 variables, also subject to u ≥ 0. In the figure 11.3, we can see that the
dual function g(u) provides a bound on f∗ for every u ≥ 0, and the largest bound g(u) gives us
turns out to be exactly f∗! In the future, we will see that this is not a coincidence and results from
KKT conditions.

11.2 Lagrange Dual Problem

Given the primal problem

min
x

f(x)

subject to hi(x) ≤ 0 for 1 ≤ i ≤ m
lj(x) = 0 for 1 ≤ j ≤ r
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Figure 11.3: Blue dot is the optimal dual value and the red dot is the optimal primal value

We have shown that our constructed dual function g(u, v) satisfies the property f∗ ≥ g(u, v) for
all u ≥ 0 and v. Thus, we get the tightest lower bound on the optimal primal criterion f∗ by
maximizing g(u, v) over all dual feasible u, v, yielding the Lagrange dual problem:

max
u,v

g(u, v)

subject to u ≥ 0

Note that, if the dual optimal value is g∗, then

f∗ ≥ g∗

This always holds (even if the primal problem is nonconvex) and is called the weak duality property.
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11.2.1 Convexity of the dual

A very interesting property is that the dual problem is a convex optimization problem (even if the
primal problem is non-convex) problem in u, v:

g(u, v) = min
x
{f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)}

= −max
x
{−f(x)−

m∑
i=1

uihi(x)−
r∑
j=1

vj lj(x)}︸ ︷︷ ︸
pointwise maximum of convex functions in (u,v)

As can be observed from above, g(u, v) can be expressed as the negative of pointwise maximum of
convex functions in (u, v). Hence, g is concave in (u, v), and u ≥ 0 is a convex constraint, hence the
dual problem is a concave maximization problem (or a convex minimization problem if we consider
−g)

So why don’t we just always write down the dual problem and solve it, if it’s convex? It turns out
computing g(u, v) is hard in and of itself, since it involves a maximization over x, especially for
non-convex problems. In other words, we might not be able to write out g(u, v) in the first place!

11.3 Strong Duality

We know that f∗ ≥ g∗, which is known as weak duality. In some problems, we see that f∗ = g∗.
This is known as strong duality.

Slater’s condition: If the primal is a convex problem, and there exists at least one strictly feasible
x ∈ Rn, then strong duality holds.

That is, for a general convex primal problem,

min
x

f(x)

subject to hi(x) ≤ 0 for 1 ≤ i ≤ m
lj(x) = 0 for 1 ≤ j ≤ r

where hi(x) is convex and lj(x) is affine, and a strictly feasible x is an x such that for every
i, hi(x) < 0 and for every j, lj(x) = 0. This is a weak condition, and an important extension to
Slater’s condition maintains that strict inequalities only need to hold over hi (x) that are not affine.

11.3.1 Strong duality for Linear Programs

For linear programs

� The dual of the dual is the primal.
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� Strong duality holds for the primal LP if it is feasible (refinement over Slater’s conditions).

� Similarly, strong duality holds for the dual if it is feasible.

� Thus, strong duality holds for LPs, except when both primal and dual are infeasible.

11.3.2 Example: SVM dual

The SVM problem is as follows:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi
(
xTi β + β0

)
≥ 1− ξi, i = 1, . . . , n

We form the following Lagrangian with the dual variables v, w ≥ 0:

L (β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi −
n∑
i=1

viξi +

n∑
i=1

wi
(
1− ξi − yi

(
xTi β + β0

))
Minimizing over β, β0, ξ gives the Lagrange dual:

g(v, w) =

{
− 1

2w
T X̃X̃Tw + 1Tw if w = C1− v, wT y = 0

−∞ otherwise

where X̃ = diag (y)X. The SVM dual problem can thus be written as:

max
w

− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

Since w = 0 is a feasible solution, Slater’s conditions are satisfied and we have strong duality.

11.4 Duality Gap

The duality gap f (x)−g (u, v) refers to the difference between the primal (f) and dual (g) criterion
values for corresponding x, u, v. An important property of the duality gap is the following:

f (x)− f∗ ≤ f (x)− g (u, v)

This implies that a zero duality gap indicates an optimal value for both the primal and the dual.
In practice, this provides a stopping criterion; if f (x)− g (u, v) ≤ ε, then f (x)− f∗ ≤ ε.
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