10-725/36-725: Convex Optimization Fall 2016

Lecture 10: Duality in Linear Programs
Lecturer: Ryan Tibshirani Scribes: Hongyang Zhang, Rahul Ladhania, Yi Wei

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various ITEX macros. Take a look at this and imitate.

1.1 Review of Proximal Gradient Descent

Consider the problem
min g(x) + h(z) (1.1)

with g, h convex, g differentiable, and i “simple” in so much as
1 2
prox,(z) = argmin Q—tHx —z||5 + h(z) (1.2)
z

is computable. Proximal gradient descent: let z(9) € R™, repeat:
z®) = prox,, (@D — 4, Vg(a® 1)), k=1,23,.. (1.3)

The step sizes t; are chosen to be fixed and small, or by backtracking.

If Vg is Lipschitz with constant L, then this has convergence rate O(1/e). We can accelerate this to optimal

rate O(1//€).

1.2 Lower Bounds in Linear Programs

Suppose we want to find lower bound on the optimal value in our convex problem, B < min, f(x). For
example, consider the following simple linear program

minz + vy, subject to z+y>2, z,y > 0. (1.4)
T,y

It is easy to see that the lower bound is B = 2, because one of the constraints is exactly the same as the
objective function.

Let us try other problems. Suppose the linear program is

minz + 3y, subject to x+y > 2, x,y > 0. (1.5)
We can have a lower bound for the objective function by = + 3y = (z + y) + 2y > 2.

1-1
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More generally, for linear program

min pr + qy, subject to z+vy > 2, z,y >0, (1.6)
T,y

the constraint can be equivalently represented as
axr +ay > 2a, ax >0, cy >0, a,b,c > 0. (1.7)
Adding them together, we have that
(a+b)z+ (a+c)y > 2a. (1.8)

Letting a + b = p and a + ¢ = ¢, we obtain that the lower bound of linear program (1.6) is given by B = 2a,
for any a, b, and ¢ such that
a+b=p, a+c=gq, a,b,c>0. (1.9)

But what is the best we can do? We can maximize our lower bound over all possible a, b, c:

max 2a, subjectto a+b=p, a+c=gq, a,b,c>0. (1.10)

a,b,c

This is also called the dual linear program of primal problem (1.6). Note that the number of dual variables
is the number of primal constraints.

Now let us try another one:

min px + qy, subject to >0, y <1, 3xz+y=2. (1.11)
z,y

The constraint of the linear program can be equivalently represented as
axr >0, =by > —b, 3cx+cy=2¢c, a >0, b>0. (1.12)
Adding them together, we have
(a+3c)x + (=b+c)y > —b+ 2c. (1.13)
Let p =a+ 3c and ¢ = —b+ ¢, we obtain the dual problem

max2c — b, subject to a+3c=p, —b+c=gq, a,b>0, (1.14)

a,b,c

as desired.

1.3 Example: Max Flow and Min Cut Problems

This is a nice example of duality in linear programs. The max flow and the min cut problems are essentially
equivalent because of duality.

First, let us define what the max flow and min cut problems are.

For the max flow problem, given a directed graph, G = (V, E), ¢;; is the capacity of the edge - the maximum
amount of, say, a commodity that one can push through that edge. We have the flow over the graph, which is
a vector f that is assigned to all the edges in the graph. The flow across any edge f;; has to be non-negative
(one cannot go against the direction of the edge) and one cannot push through more than the capacity ¢;;
of that edge. Then, there is the important balancing property that the flow going into the node has to be
equal to the flow coming out of the node. That is true for all the nodes except for the source (vy) and the
sink (v;) nodes. Mathematically, it is represented thus:
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fij Z 07 (Zvj) € E
fij <cij, (i,)) € E

Z fik: Z fij,k‘EV\{S,t}

(i,k)EE (k,j)EE

In the problem, therefore, we want to maximize the total flow leaving the source, subject to satisying the
aforementioned properties. Think of it as distributing some commodity across the graph: pushing it from
the source to the sink.

max Z fsj

fERIEI

(s,j)EE
subject to fij Z 0, fij S CiijI‘ all (Z,]) ek (115)
S fw= > fiyforallkeV\{st}
(i,k)eE (k.j)eE

Now, we can derive the dual of this, as this is just a linear program. We will not go through the dual
derivation steps in class (it is for the homework).

Note that

> (maijfis +bi(fig =)+ Y w( D> fa— Y, fi) <0
(i,5)€EE keV\{s,t} (i,k)EE (k,j)eEE
for any a;j,bi; >0, (1,j)€ E, and xi, k € V' \ {s,t}

Y Miylaba) < Y biey

(1,7)€EE (i,7)€E

Rearrange as

where M;;(a,b, z) collects terms multiplying f;;

Want to make LHS in previous inequality equal to primal objective,

My = bsj — asj + x5 want this = 1
e, { My =by—ap+uz; want this = 0
Mij = bij — a5 +x; —x; want this =0

We have shown that primal optimal value < 3 (i.))EE bijcij

subject to a, b, x satisfying constraints. And thus, we end with this dual problem:

min E bijcij
beERIEl 2RIV =
(i,j)€E

subject to bij+x;—x; >0 forall(i,j) € £
b>0,z, =12, =0

(1.16)
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This is similar to what we did before. In the examples we did earlier, we started with a minimization
problem and got a maximization dual problem. Here, we begin with a maximization problem, and end with
a dual minimization problem. This is equivalent to deriving upper bound for the maximization problem. So
here, we end up with our dual as another linear program - interestingly, this problem is the linear program
relaxation of what is called the min cut problem.

What is the min cut problem? It is another well studied problem over graphs. And we have the same setup:
we have directed edges, and capacity over the edges. In this problem, we want to divide our nodes into
two groups, such that the sum of the capacites of the edges crossing the cut is the smallest over all possible
configurations of the nodes in the two groups.

That is an integer problem. We are assigning nodes to one group or the other. We have binary variables in
the optimization problem, which is written down here:

erflig 2 b

subject to bij > x; — (1.17)
bij, xi,x; € {0,1}
for all 4, 5

It turns out that the dual of the max flow problem is just the LP relaxation of the integer min flow problem.
So it takes the binary variables and allows them to be anything between 0 and 1 rather than be equal to 0
or 1.

By construction, we know value of max flow is less than or equal to that of the value of its dual. By
construction, the dual here is an upper bound of the criterion in the primal, and as that is the relaxation of
the min integer program, it is less than or equal to the capaxcity of the min cut. Note that by relaxing the
integer min flow problem, we convexify the constraints, so the minimum will only get smaller. Thus, it is
less than or equal to the capacity of the min cut.

Therefore, we have
value of max flow < optimal value for LP relaxed min cut < capacity of min cut

We have established a sequence of inequalities. A famous result called max flow min cut theorem is that
these two things are the same - the capacity of the min cut and the value of the max flow problems are the
same. And these problems are equivalent. Therefore, we have equalities for everything here. The min flow
and max flow problems are equivalent.

Thus, this was just another example of strong duality. That primal and dual have exactly the same optimal
values. The value of the max flow and capacity of the min cut are equal. In particular, from perspective of
the current lecture, the dual problem did not have a gap betwen its criterion value and the primal problem.

1.4 Another Perspective on LP Duality

Primal:

min 'z
xr

subject to Az =b
Gx<h
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Dual:
max —bTu—hTv
u,b
subject to — ATu—-GTv=c
v>0

Let us introduce the second explanation of dual. For any u and v > 0, and = primal feasible, then for any u
and v > 0,
f* = mingec L(x,u,v) > min, L(xz,u,v) = g(u,v)

Note that
if c=—ATu—GTv, g(u,v) = =bTu—hTw

otherwise, g(u,v) = —o00

Now we can maximize g(u,v) over u and v > 0 to get the tightest bound, and this gives exactly the dual LP
as before. This last perspective is actually completely general and applies to arbitrary optimization problems
(even nonconvex ones).

Example:

Setup: two players, J and R, and a payout matrix P

Game: if J chooses i and R chooses j, then J must pay R amount P;; (don’t feel bad for J, this can be
positive or negative).

They use mixed strategies, i.e., each will first specify a probability distribution, and then P(J chooses i) =
z;, i =1,..,m, P(R chooses j) =y;, j=1,...,n. The expected payout then, from J to R, is T Py.

Now suppose that, because J is wiser, he will allow R to know his strategy x ahead of time. In this case, R
will choose vy to maximize =7 Py, which results in J paying off mawizl}wn(PTx)i.

J’s best strategy is then to choose his distribution x according to

min  max (PTz);

r i=1,....n

subject to x > 0, 1Tz =1

In an alternate universe, if R were somehow wiser than J, then he might allow J to know his strategy y
beforehand.
By the same logic, R’s best strategy is to choose his distribution y according to

max min (Py);
y  Jj=l,...m

subject to y >0, 1Ty =1

Call R’s expected payout in first scenario f;, and expected payout in second scenario f5. Because it is clearly
advantageous to know the other player’s strategy, f; > f5. But by Von Neumman’s minimax theorem: we
know that f; = f3.
Recast first problem as an LP:

min ¢

s,t

subject to >0, 1Tz =1
PTe >t

Now form what we call the Lagrangian:

Lz, t,u,v,y) =t —u'z +v(1 — 172) + T (PT2 — 1)
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and what we call the Lagrange dual function:

g(u,v,y) :mitnL(xﬂf,u,v,y) =vifl1-1Ty=0 Py—u—vl1=0

Hence dual problem, after eliminating slack variable u, is

subject to y >0, 1Ty =1
Py>v

This is exactly the second problem, and therefore again we see that strong duality holds. In LPs, as we’ll
see, strong duality holds unless both the primal and dual are infeasible.



