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Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

20.1 Dual (sub)gradient methods

When we cannot find a closed-form solution of the original problem, we can still apply subgradient or gradient
methods to its dual problem.

Considering the primal problem as

min
x

f(x) subject to Ax = b

We write it dual problem with the conjugate of f as

max
u

�f⇤(�ATu)� bTu

We define g(u) = �f⇤(�ATu)� bTu, given the definition of subgradients

@g(u) = A@f⇤(�ATu)� b

Given x 2 @f⇤(�ATu) , x 2 argmin
z

f(z)� (�ATu)T z , x 2 argmin
z

f(z) + uTAz, we write the formal
equation as

@g(u) = Ax� b

where x 2 argmin
z

f(z) + uTAz

We solve this with dual subgradient method by repeating two steps for k = 1, 2, 3, ...(starting with an initial
u(0)):

• x(k) 2 argmin
x

f(x) + (u(k�1))TAx

• u(k) = u(k�1) + t
k

(Ax(k) � b)

where step sizes t
k

are randomly chosen in standard ways. When f is strictly convex, the first item becomes
an equation x(k) = argmin

x

f(x) + (u(k�1))TAx. Proximal gradients and acceleration are also applicable
when necessary.
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20.1.1 Convergence Analysis

Lipschitz gradients and strong convexity

Conclusion: Assume that f is a closed and convex function. Then f is strongly convex with parameter
d , rf⇤ Lipschitz with parameter 1/d.

Proof : We give proof for “=)”: Given the definition of strong convexity, if g strongly convex with minimizer
x, we have

g(y) � g(x) +
d

2
||y � x||2

for all y. Also define two minimizers x
u

= rf⇤(u) minimizing g(x) = f(x) � uTx, and x
v

= rf⇤(v)
minimizing g(x) = f(x)� vTx, we have

f(x
v

)� uTx
v

� f(x
u

)� uTx
u

+
d

2
||x

u

� x
v

||22

f(x
u

)� vTx
u

� f(x
v

)� vTx
u

v +
d

2
||x

u

� x
v

||22

Adding these two together, we have

f(x
v

)� uTx
v

+ f(x
u

)� vTx
u

� f(x
u

)� uTx
u

+ f(x
v

)� vTx
v

+ d||x
u

� x
v

||22

Then d||x
u

� x
v

||22  uTx
v

+ uTx
u

+ vTx
v

+ vTx
u

= (u� v)T (x
u

� x
v

)  ||u� v||2||xu

� x
v

||2, so we end up
with

||x
u

� x
v

||2  1

d
||u� v||2

Convergence GuaranteesGivne the last facts we have, we have the convergence rate for Dual (sub)gradient
methods (dual objective):

• If f is strongly convex with parameter d, then dual gradient ascent with fixed step sizes t
k

= d,
k = 1, 2, 3, ..., converges at the rate O(1/✏)

• If f is strongly convex with parameter d, and rf is Lipschitz with parameter L, then dual gradient
ascent with fixed step sizes t

k

= 2/(1/d+ 1/L), k = 1, 2, 3, ..., converges at the rate O(log(1/✏))

20.2 Dual Decomposition

Consider

min
x

BX

i=1

f
i

(x
i

)

subject to Ax = b

Where x = (x1, x2, ..., xB

) 2 Rn with each x
i

2 Rni

It is easy to observe that while calculating the (sub)gradient, the minimization problem can be transformed
to B separate problems.
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x+ 2 argmin
x

BX

i=1

f
i

(x
i

) + uTAx

() x+
i

2 argmin
xi

f
i

(x
i

) + uTA
i

x
i

, i = 1, 2, ..., B

20.2.1 Dual Decomposition with Equality Constraints

Dual Decompostion Algorithm:

Broadcast: x
(k)
i

2 argmin
xi

f
i

(x
i

) + (u(k�1))TA
i

x
i

, i = 1, 2, ...B

Gather: u(k) = u(k�1) + t
k

(
BX

i=1

A
i

x
(k)
i

� b)

20.2.2 Dual Decomposition with Inequality Constraints

min
x

BX

i=1

f
i

(x
i

)

subject to
BX

i=1

A
i

x
i

 b

Dual decomposition (projected subgradient method): repeat for k = 1,2,3,...

Broadcast: x
(k)
i

2 argmin
xi

f
i

(x
i

) + (u(k�1))TA
i

x
i

, i = 1, 2, ...B

Gather: u(k) = (u(k�1) + t
k

(
BX

i=1

A
i

x
(k)
i

� b))+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, u
i

}, i = 1, ...,m

Price coordination interpretation (Vandenberghe):

• Have B units in a system, each unit chooses its own decision variable x
i

(how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each component of dual variable u
j

is price of
resource j

• Dual Update:
u+
j

= (u
j

� ts
j

)+, j = 1, 2, ...m

where s = b�
P

B

i=1 Ai

x
i

are slacks

– Increase price u
j

if resource j is over-utilized, s
j

< 0

– Decrease price u
j

if resource j is under-utilized, s
j

> 0

– Never let prices get negative.
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20.3 Augmented Lagrangian Method (Method of Multipliers)

Transfer the primal problem to an equivalent problem, where ⇢ > 0 is a parameter:

min
x

f(x) +
⇢

2
||Ax� b||22

subject to Ax = b

Dual gradient ascent:

x(k) = argmin
x

f(x) + (u(k�1))TAx+
⇢

2
||Ax� b||22

u(k) = u(k�1) + ⇢(Ax(k) � b)

Choose step size t
k

= ⇢:

0 2 @f(x(k) +AT (u(k�1) + ⇢(Ax(k) � b))

= @f(x(k) +ATu(k)

This is the stationarity condition for the original primal problem. Ax(k) � b approaches zero under mild
conditions, hence x(k), u(k) approach optimality.

Advantage: Much better convergence properties. Objective is strongly convex when A has full column rank.
Disadvantage: Lose decomposability.

20.4 Alternating Direction Method of Multipliers (ADMM)

20.4.1 ADMM

Consider

min
x,z

f(x) + g(z)

subject to Ax+Bz = c

Augment the objective with ⇢ > 0:

min
x,z

f(x) + g(z) +
⇢

2
||Ax+Bz � c||22

subject to Ax+Bz = c

Define the augmented Lagrangian as:

L
⇢

(x, z, u) = f(x) + g(z) + uT (Ax+Bz � c) +
⇢

2
||Ax+Bz � c||22

Steps for ADMM are:
x(k) = argmin

x

L
⇢

(x, z(k�1), u(k�1))

z(k) = argmin
z

L
⇢

(x(k), z, u(k�1))

u(k) = u(k�1) + ⇢(Ax(k) +Bz(k) � c)
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20.4.2 Convergence Guarantees

Under modest assumptions on f, g, for any A,B, ⇢ > 0:
Residual convergence: r(k) = Ax(k) +Bz(k) � c ! 0
Objective convergence: f(x(k)) + g(z(k)) ! f⇤

Dual convergence: u(k) ! u⇤

Convergence rate is not known in general. Roughly, it behaves like a first-order method or a bit faster.

20.4.3 ADMM in Scaled Form

Replace the dual variable u by a scaled variable w = u/⇢:

x(k) = argmin
x

f(x) +
⇢

2
||Ax+Bz(k�1) � c+ w(k�1)||22

z(k) = argmin
z

g(x) +
⇢

2
||Ax(k) +Bz � c+ w(k�1)||22

w(k) = w(k�1) +Ax(k) +Bz(k) � c

w(k) is given by a sum of residuals:

w(k) = w(0) +
kX

i=1

(Ax(i) +Bz(i) � c)

20.4.4 Example: Alternating Projections

Find a point in intersection of convex sets C,D ✓ Rn:

min
x

I
C

(x) + I
D

(x)

Express it as:

min
x,z

I
C

(x) + I
D

(z)

subject to x� z = 0

ADMM cycle involves two projections:

x(k) = argmin
x

P
C

(z(k�1) � w(k�1))

z(k) = argmin
z

P
D

(x(k) + w(k�1))

w(k) = w(k�1) + x(k) � z(k)


