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16.1 Last time: barrier method

16.1.1 Barrier method

The main idea of barrier method is to approximate the indicator function IC(x) restricted to a set C with
barrier problem. Then central idea of barrier method is to extend Newton’s method to a problem with
equality constraints and inequality constraints. The inequality constraints are difficult constraints to deal
with. The barrier problem is easier to solve compare to the original problem.
The original problem:

minx f(x) + IC(x)

s.t. Ax = b

The barrier problem:

minx f(x) +
1

t
φ(x)

s.t. Ax = b

where t > 0 and φ is a barrier function for C.
The basic case is

C = {x : hi(x) ≤ 0, i = 1, · · · ,m}

and there is a canonical barrier function, which is a logarithmic barrier function

φ(x) = −
m∑
i=1

log(−hi(x))

Note: this is for convex problem, so the objective function f and inequality constraints are convex and
smooth functions. The KKT conditions hold for both orginal and barrier problem. From KKT conditions,
we get the solution to the barrier problem which satisfies

f(x?(t))− f? ≤ m/t

The optimality gap is bounded by m/t. Big t here means there are more weight on the objective function,
and it will give a good approximation to the original problem.

16-1



16-2 Lecture 16: Duality revisited

16.1.2 Strict feasibility

An important detail here is that the barrier method essentially by construction we enforce the constraints
throughout the algorithm. When doing Newton’s method and line search, we need to make sure the step
length is small enough that the constraints are not violated. In principle, to get started, we need a strictly
feasible point. The start point should satisfy the inequalities strictly as well as the quality constraints. That
is, find an initial x such that

hi(x) ≤ s
Ax = b

In simple cases, it is very straightforward to start with a point. In other cases, we can set up phase I
problem. If there are solutions that s is negative, then that automatically gives an initial strictly physical
point. Otherwise the original problem is infeasible.

16.2 Lagrangian duality revisited

For the primal problem:

min
x

f(x)

s.t. hi(x) ≤ 0, i = 1, · · · ,m
lj(x) = 0, j = 1, · · · , r

This can be any problem. Associated with Lagrangian function, we have

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)

We can rewrite the primal problem as

p := min
x

max
u,v

L(x, u, v)

The dual problem is

d := max
u,v

min
x
L(x, u, v)

16.2.1 Weak and strong duality

The key fact is that p ≥ d. That is, the optimal primal is an upper bound of the optimal dual.
For strong duality, if we assume f, hi(x) are convex, and some inequality constraints and all equality con-
straints are affine. If there exist a point that satisfies the non-affine inequality constraints strictly, and
satisfies the other constraints, then the strong duality holds. For h1, · · · , hp are convex with domain D and
hp+1, · · · , hm, l1, · · · , lr are affine,

if ∃x̂ ∈ relint(D), hi(x̂) < 0, i = 1, · · · , p;
hi(x̂) ≤ 0, i = p+ 1, · · · ,m;

lj(x̂) = 0, j = 1, · · · , r

the strong duality holds.
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16.2.2 Example: linear programming

Primal and dual problems:

min
x

cTx

s.t Ax = b

x ≥ 0

⇐⇒

max
y,s

bT y

s.t. AT y + s = c

s ≥ 0

16.2.3 Example: convex quadratic programming

The convex quadratic programming problem is similar. The primal and dual problems are:

min
x

1

2
xTQx+ cTx

s.t Ax = b

x ≥ 0

⇐⇒
max
u,y,s

bT y − 1

2
uTQu

s.t. AT y + s− c = Qu

s ≥ 0

where Q symmetric and positive semi-definite.

The main difference between linear and quadratic programming problem is in quadratic programming prob-
lem the objective function includes a quadratic term. And this form of dual highlights a fact that the dual
of a convex quadratic programming problem is another convex quadratic programming problem.

16.2.4 Example: barrier problem for linear programming

One more example that connected to what we learned last time is applying the barrier method to linear
programming.

Primal problem:

min
x

cTx− τ
n∑

i=1

log xi

s.t Ax = b

where τ > 0 and it corresponds to 1/t we used previously.

Dual problem:

max
y,s

bT y + τ

n∑
i=1

log si + n(τ − τ log τ)

s.t. AT y + s = c

Proof: (Derivation of the dual)

Using the notation more conventional in linear programming (dual variable y), the Lagrangian of the primal
barrier problem is:

L(x, y) = cTx− τ
n∑

i=1

log xi + yT (b−Ax)
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Then the dual problem should be:

max
y

min
x

(c−AT y)Tx− τ
n∑

i=1

log xi + bT y

Firstly we look at the parts with x:

min
x

(c−AT y)Tx− τ
n∑

i=1

log xi

Let s = c−AT y, then the above problem decouples to:

min
x

n∑
i=1

{si − τ log xi}

and then we can solve it for each component separately. The minimizer is x?i = τ/si. Hence the dual problem
is:

max
x

bT y + nτ − τ
n∑

i=1

log
τ

si

s.t. AT y + s = c

which is equivalent to the dual problem we want to prove above after rearranging of terms.

One thing to be highlighted here is if we look at both linear programming problem and the barrier problem
for linear programming, we’ll find the dual of the barrier for the primal problem turns to be some barrier of
the dual problem (of standard-form linear programming), if we ignore the n(τ − τ log τ) term which is just
a constant.

16.3 Optimality conditions

Then we look at the optimality conditions of convex problem, that is:

min
x

f(x)

s.t. Ax = b

hi(x) <= 0, i = 1, 2, ...,m

Assume f, h1, ..., hm convex and differentiable. Also assume that strong duality holds.

Then x? and (u?, v?) are respectively primal and dual optimal solution if and only if (x?, u?, v?) solves the
KKT conditions:

∇f(x) +AT v +∇h(x)u = 0 (Stationarity)

Ax = b (Primal feasible)

Uh(x) = 0 (Complementarity)

u,−h(x) ≥ 0 (Primal and dual feasible)

Here U = diag(u), ∇h(x) = [∇h1(x), ...,∇hm(s)].
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16.3.1 Central path equations

Then we look at the optimality conditions for the barrier problem, which are also called central path equa-
tions.

Barrier problem:

min
x

f(x) + τφ(x)

s.t. Ax = b

where:

φ(x) = −
m∑
i=1

log (−hi(x))

Optimality conditions for barrier problem (and its dual):

∇f(x) +AT v +∇h(x)u = 0 (Stationarity)

Ax = b (Primal feasible)

Uh(x) = −τ1 (Complementarity)

u,−h(x) > 0 (Primal and dual feasible)

The 1st and 2nd conditions are identical to the case without barrier. The 3rd condition is not identical, but
becomes uihi(x) = −τ . And the 4th condition becomes strictly positive because this is the barrier problem.

At the end of day, we could solve the original optimization problem by equivalently solve the optimality
conditions. This is the same for the barrier problem. We’ll see more of that in next class.

16.3.2 Special case: linear programming

Primal and dual problems:

min
x

cTx

s.t Ax = b

x ≥ 0

⇐⇒

max
y,s

bT y

s.t. AT y + s = c

s ≥ 0

Optimality conditions for both:

AT y + s = c

Ax = b

XS1 = 0

x, s ≥ 0

Here X = Diag(x), S = Diag(s).

Note in linear programming, we just need feasibility for strong duality to hold, because all inequalities in
linear programming are affine. Does the same thing happen with quadratic programming? Does the strong
duality automatically holds? The answer: they are essentially the same thing.
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16.3.3 Algorithms for linear programming

So if the linear programming problem feasible, then its optimal solution is perfectly characterized by the
optimal conditions. Two main classes of algorithms for solving linear programming problem are:

• Simplex: maintain first three conditions and aim for fourth one.

• Interior-point methods: maintain fourth condition (and maybe first and second) and aim for third one.

The simplex algorithm is invented in 1940’s and is one of the most influential methods. It is still a very
competitive algorithm. And it can be summarized in one sentence as above: it maintains first 3 conditions
and x ≥ 0, and look for s ≥ 0, and it solves the problem once it finds qualified s. Interior-point method,
eg. the barrier method applied to linear programming, it satisfies the 4th condition and violate the 3rd
condition, and only satisfies the 3rd condition when it converges. For different implementations of interior-
point method, it may or may not satisfy the first two conditions.

16.3.4 Duality gap for barrier problem of linear programming

If x?(τ), u?(τ), v?(τ) solve KKT conditions for barrier problem (Central path equations), the duality gap
equals to:

f(x?(τ))−min
x
L(x, u?(τ), v?(τ))

From stationarity we know x?(τ) is exactly the minimizer of L(x, u?(τ), v?(τ)), hence:

f(x?(τ))−min
x
L(x, u?(τ), v?(τ))

= f(x?(τ))− L(x?(τ), u?(τ), v?(τ))

= f(x?(τ))− [f(x?(τ)) + u?(τ)Th(x?(τ)) + v?(τ)T (b−Au?(τ))]

= − u?(τ)Th(x?(τ))

= mτ

Since x?(τ) is feasible, b−Au?(τ) = 0. And since the complementarity of central path equations, u?(τ)Th(x?(τ)) =
−mτ . The result mτ is exactly the same of the sub-optimality gap m/t we learned last time.

16.3.5 Central Path for linear Programming

Primal problem :

min
x

cTx− τ
n∑

i=1

log(xi)

s.t. Ax = b

Dual problem :

max
y,s

bT y + τ

n∑
i=1

log(si)

s.t. AT y + s = c
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Optimality conditions for both:

AT y + s = c

Ax = b

XS1 = τ1

x, s > 0

Compelementarity of the original optimality condition tweaked for this case (XS1 = τ1).

16.4 Fenchel duality

Fenchel duality is useful in that we can express dual problems explicitly in terms of the conjugates of the
primal problem.

Consider the primal problem :

min
x

f(x) + g(Ax)

Rewrite it as

min
x

f(x) + g(z)

s.t. Ax = z

Lagrangian is

L(x, z, v) = f(x) + g(z) + vT (z −Ax)

Then Dual problem is

max
v

min
x,z

(
vtz + g(z)− (AT v)Tx+ f(x)

)
recall that : f∗(s) := max

x
(sTx− f(x))

Thus, dual problem is

max
v

− f∗(AT v)− g∗(−v)

This special type of duality is called Fenchel duality.

Nice Fact : if f, g are convex and closed then the dual of the dual is the primal, because f∗∗ = f and g∗∗ = g.

16.4.1 Example: conic programming

Primal problem (in standard form)

min
x

cTx

s.t. Ax = b

x ∈ K
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where K is a closed convex cone.

Dual problem

max
y,s

bT y

s.t. AT y + s = c

s ∈ K∗

Two ways to get dual problem :

• Derive dual using Lagrangian

• Fenchel duality

re-define primal problem:

min
x

f(x) + g(Ax)

where

f(x) = cTx+ IK(x)

g(z) = I{b}(z)

Observe f(x) + g(Ax) is: {
cTx if we have a feasible point

+∞ otherwise

Recall : if K is closed convex cone, then

I∗k(s) = max
x

sx − Ik(x)

= max
x∈K

sTx

=

{
0 = s ∈ −K∗

+∞ = s /∈ −K∗

= I−K∗(s)

Strong duality holds if one of the problem is strictly feasible. In this case, strict feasibility implies that there
is a solution that is at the (relative) interior of the cone.

If both primal and dual are strictly feasible, then strong duality holds and both primal and dual optima are
attained and are the same.

16.4.2 Example: semidefinite programming

Special case of the conic programming when the space of the problem is the space of symmetric matrices
and K in conic programming is cone of positive semidefinite matrices.
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Primal

min
x

C ·X

s.t. Ai ·X = bi, i = 1, . . . ,m

X � 0

Dual

max
y

bT y

s.t.

m∑
i=1

yiAi + S = C

S � 0

Recall trace inner product in Sn

X · S = trace(XS)

16.4.3 Strong duality does not always hold

Here are the cases in which the strong duality fails to hold in semidefinite programming.

Examples:

min 2x12

s.t.

[
0 x12
x12 x22

]
� 0

Translating this example into standard from of SDP, we have

C =

[
0 1
1 0

]
A =

[
1 0
0 0

]
b = 0

Then dual is

max 0 · y

s.t.

[
1 0
0 0

]
y + S =

[
0 1
1 0

]
, S � 0

⇐⇒
[
−b 1
1 0

]
� 0

[
−y 1
1 0

]
� 0, but it has negative determinant which is 0 ∗ y − 1 = 1, thus we have a contradiction.
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Second example:

min x11

s.t.

[
x11 1
1 x22

]
� 0

This is the case in which the strong duality holds, but the primal is not attained.

Third example :

min ax22

s.t.

 0 x12 1− x22
x12 x22 x23

1− x22 x23 x33

 � 0, for a > 0

This example is the case in which the primal and dual optimals are attained, but there is a non-zero duality
gap. Thus, strong duality doesn’t hold.


