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12.1 KKT Conditions

Consider the general optimization problem (P) shown below, where we have not assumed anything regarding
the functions f, g, h (like convexity). We define G as the dual of P.

P

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r

G

max
u,v

min
x

f(x) +
∑m
i=1 ui hi(x) +

∑r
j=1 vj lj(x)

subject to u ≥ 0

We define the function g(u, v) = min
x

L(x, u, v) where L(x, u, v) , f(x) +
∑m
i=1 ui hi(x) +

∑r
j=1 vj lj(x). We

first state the KKT conditions associated with problem P, they are:

1. Stationarity Condition

0 ∈ ∂

f(x) +

m∑
i=1

ui hi(x) +

r∑
j=1

vj lj(x)


2. Complementary Slackness

ui · hi(x) = 0, i = 1, . . . ,m

3. Primal feasibility

hi(x) ≤ 0 , i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r

4. Dual Feasibility
ui ≥ 0 , i = 1, . . . ,m
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We begin by first explaining what each of the KKT conditions state, and later discuss their implications.
We begin by noting that the KKT conditions apply to a triplet x, u, v. The stationarity condition tells us
that for the given dual variable pair u, v, the point x minimizes the lagrangian L(x, u, v). For convex f, g, h
the stationarity condition can be alternatively written as

0 ∈ ∂f(x) +

m∑
i=1

ui ∂hi(x) +

r∑
j=1

vj∂lj(x)

The complementary slackness condition applies only to inequality constraints. For the ith inequality con-
straint, complementary slackness tells us that at x, either hi(x) = 0 or the corresponding dual variable
ui = 0. If hi(x) = 0, we say that the inequality constraint is tight at x.

Primal feasibility basically tells us that x must satisfy all the constraints specified in problem P.

Dual feasibility tells us that the dual variables associated with the inequality constraints must be non-
negative.

We will next see that the KKT conditions on x, u, v are in a very broad sense equivalent to having an optimal
primal solution x and optimal dual solution u, v at the same time. In other words, x is a solution to the
primal problem P and u, v is a solution to the dual problem G at the same time.

12.1.1 Necessity

If x∗ and u∗, v∗ are the primal and dual solutions respectively with zero duality gap, we will show that
x∗, u∗, v∗ satisfy the KKT conditions. It is important to note that we are assuming zero duality gap, for
example if P was a convex problem, then, strong duality is implied if Slater’s condition holds for P.

f(x∗) = g(u∗, v∗) by zero duality gap assumption

= min
x

f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j lj(x), by definition (12.1)

≤ f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j lj(x
∗) (12.2)

≤ f(x∗) (12.3)

Eqn (12.2) follows from eqn (12.1) since minimization of L(x, u∗, v∗) in eqn (12.1) is carried with respect to
all x ∈ Rn, L(x∗, u∗, v∗) must be atleast greater than g(u∗, v∗). Eqn (12.3) follows from that the fact that
since x∗ is optimal to our primal problem P, it must satisfy hi(x

∗) ≤ 0, ∀ i and lj(x
∗) = 0, ∀ j. Similarly

since u∗, v∗ are solutions to dual problem G, we should have u∗i ≥ 0, ∀ i. Combining these two facts yeilds
the relation u∗i hi(x

∗) ≤ 0, ∀ i and v∗j lj(x
∗) = 0, ∀ j. Looking at equations eqn (12.1) and (12.3), we can

conclude that the inequalities appearing in eqns (12.2) and (12.3) can actually be replaced by equalities.
Two things that we have learnt from the above set of equations:

1. By the equality of eqns (12.1) and (12.2), the point x∗ minimizes L(x, u∗, v∗) over x ∈ Rn. Hence the
subdifferential of L(x, u∗, v∗) must contain 0 at x = x∗ —is exactly the stationarity condition.

2. From equality of eqns (12.2) and (12.3), we must have
∑m
i=1 u

∗
i hi(x

∗) = 0, and since each term here is
≤ 0, this implies u∗i hi(x

∗) = 0, ∀ i —this is exactly complementary slackness.
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12.1.2 Sufficiency

We will show that if there exists x∗, u∗, v∗ that satisfy KKT conditions, then x∗ and u∗, v∗ are primal and
dual optimal. Assume there exists x∗, u∗, v∗ that satisfies KKT conditions for problem P, then,

g(u∗, v∗) = f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j lj(x
∗), from stationarity condition (12.4)

= f(x∗) (12.5)

Eqn (12.5) follows from the fact that u∗i hi(x
∗) = 0, ∀ i due to complementary slackness and lj(x

∗) = 0 due
to primal feasibility. Therefore we have shown that the duality gap is 0 at x∗ and u∗, v∗ (and x∗ and u∗, v∗

are primal and dual feasible from KKT conditions). Recall from last lecture, if we ever have a zero duality
gap then we necessarily have the solutions, hence x∗ and u∗, v∗ are primal and dual optimal.

12.1.3 Putting it together

In summary,

1. For any optimization problem, if x∗ and u∗, v∗ satisfy KKT conditions for the problem, then satisfying
those KKT conditions is sufficient to imply that x∗ and u∗, v∗ are the optimal solutions for the primal
and it’s dual. This statement is equivalent to saying satisfying KKT conditions is always sufficient for
optimality.

2. If strong duality holds and we have solutions for the problem, then those solutions must necessarily
satisfy KKT conditions.

An easy way to remember the above equivalence is suppose we know that strong duality holds (for example
a convex problem satisfying Slater’s conditions) then:
x∗ and u∗, v∗ are primal and dual solutions ⇐⇒ x∗ and u∗, v∗ satisfy the KKT conditions.
An important warning concerning the stationarity condition: for a differentiable function f , we
cannot use ∂ f(x) = {∇f(x)} unless f is convex. The motivation for this warning is from the fact that
for non-convex problems, the gradient of the function cannot be substituted in place of the sub-differential
as a general rule to satisfy the stationarity condition. In fact, a sub-differential may not even exist for a
differentiable non-convex function.
Another warning concerning stationarity condition is when atleast one of f, g, h is non-convex,

we cannot assume ∂
(
f(x) +

∑m
i=1 ui hi(x) +

∑r
j=1 vj lj(x)

)
= ∂f(x) +

∑m
i=1 ui ∂hi(x) +

∑r
j=1 vj∂lj(x).

12.1.4 Origins Of KKT Conditions

1. KKT conditions first appeared in a publication by Kuhn and Tucker in 1951. KKT conditions were
originally called KT conditions until recently.

2. Later people found out that Karush had the conditions in his unpublished master’s thesis of 1939,
so KT conditions have since been referred to as KKT conditions to acknowledge the contribution by
Karush.

A side point, for unconstrained problems, the KKT conditions are nothing more than the subgradient
optimality condition. Another side-point, for general constrained convex optimization problems, recall we
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could have pushed the constraints into the objective through their indicator functions and obtained an
equivalent convex problem. The KKT conditions for the constrained problem could have been derived from
studying optimality via subgradients of the equivalent problem, i.e.

0 ∈ ∂f(x∗) +

m∑
i=1

Nhi≤0(x∗) +

r∑
j=1

Nlj=0(x∗)

where NC(x) is the normal cone of C at x.

12.2 Examples

12.2.1 Example: Quadratic with equality constraints

Consider the problem below for Q � 0,

min
x

1

2
xTQx+ cTx

subject to Ax = 0

We will derive the KKT conditions for the above quadratic problem. Lets start by noting that the problem
is convex and Slater’s condition definitely holds (check at x = 0, Ax = 0 so feasible), hence strong duality
holds. We start with the Lagrangian,

L(x, u) =
1

2
xTQx+ cTx+ uT (Ax)

Since the Lagragian is differentiable we can arrive at the stationarity condition by setting ∇xL(x, u) = 0.
Hence, the stationarity condition is equivalent to

Qx+ c+ATu = 0 (12.6)

Since there are no inequality constraints in the problem, we do not have any equations for complementary
slackness. For primal feasibility, we need to satisfy

Ax = 0 (12.7)

Note, there are no constraints for dual feasibility since u is allowed to be unconstrained. Eqns (12.6) and
(12.7) can be succintly written as [

Q AT

A 0

]
︸ ︷︷ ︸
KKT matrix

[
x
u

]
=

[
−c
0

]
(12.8)

Eqn (12.8) can be solved in closed form. The KKT matrix will reappear when we discuss Newton’s method.

12.2.2 Example: water-filling

Consider the following power allocation optimization problem:

minimize
x∈Rn

−
∑n
i=1 log(αi + xi)

subject to x ≥ 0, 1Tx = 1
(12.9)
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This problem arises from information theory, where each variable xi represents the transmitter power allo-
cated to the i-th channel and log(αi + xi) gives the capacity or communication rate of the channel. The
problem can be regarded as allocating a total power of one to the channels in order to maximize the total
communication rate.

The KKT conditions are:

• Stationarity:
−1

αi + xi
− ui + v = 0, i = 1, . . . , n (12.10)

• Complementary slackness:
ui · xi = 0, i = 1, . . . , n (12.11)

• Primal feasibility:
x ≥ 0, 1Tx = 1 (12.12)

• Dual feasibility:
ui ≥ 0 (12.13)

From above results, we know that

v − 1

αi + xi
v = ui ≥ 0, i = 1, . . . , n (12.14)

and

(v − 1

αi + xi
) · xi = 0, i = 1, . . . , n (12.15)

We argue that if v ≥ 1/αi, then xi must be 0; otherwise v = 1/(αi + xi). Using the primal feasibility we
need to solve the following problem to get v:

n∑
i=1

max{0, 1/v − αi} = 1 (12.16)

This is a univariate equation and easy to solve. This reduced problem is called water-filling. Here the i can
be thought as the ground level above patch i, and then we flood the region with water to a depth 1/v. We
can increase the flood level until we have used a total amount of water equal to one.

12.2.3 Example: support vector machines

minimize
β∈Rp, β0∈R, ξ∈Rn

(1/2)‖β‖22 + C
∑
i∈S ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n,

(12.17)

The KKT stationarity conditions we have

0 =

n∑
i=1

wiyi, β =

n∑
i=1

wiyixi, w = C1− v (12.18)

The complementary slackness is

viξi = 0, wi(1− ξi − yi(xTi β + β0)) = 0, i = 1, . . . , n, (12.19)
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Hence at optimality we have β =
∑n
i=1 wiyixi and wi is nonzero only if 1− ξi − yi(xTi β + β0) Such points i

are called the support points.

We note that KKT conditions does not give a way to find solution of primal or dual problem-the discussion
above is based on the assumption that the dual optimal solution is known. However, it gives a better under-
standing of SVM: the dual variable wi acts as an indicator of whether the corresponding point contributes
to the decision boundary. This fact can give us more insight when dealing with large-scale data: we can
screen away some non-support points before performing optimization.

12.3 Constrained and Lagrange forms

Often in statistics and machine learning well switch back and forth between constrained form, where t ∈ R
is a tuning parameter,

minimize
x

f(x)

subject to h(x) ≤ t,
(12.20)

and Lagrange form, where λ ≥ 0 is a tuning parameter

min f(x) + λ · h(x) (12.21)

and claim these are equivalent. We will show this claim is almost always true given the condition that f and
h are both convex.

(C) to (L): if problem (C) is strictly feasible, then strong duality holds, and there exists some λ > 0 (dual
solution) such that any solution x in (C) minimizes

min f(x) + λ · (h(x)− t) (12.22)

so x∗ is a solution in (L).

(L) to (C): if x is a solution in (L), then the KKT conditions for (C) are satisfied by taking t = h(x), so x
is a solution in (C).
conclusion:

∪λ≥0{solutions in (L)} ⊆ ∪t{solutions in (C)} (12.23)

∪λ≥0{solutions in (L)} ⊇ ∪(C) is strict feasible{solutions in (C)} (12.24)

12.4 Back to duality

One of the most important uses of duality is that, under strong duality, we can characterize primal solutions
from dual solutions. Recall that under strong duality, the KKT conditions are necessary for optimality.
Given dual solutions u∗, v , any primal solution x∗ satisfies the stationarity condition

0 ∈ ∂f(x∗) +

m∑
i=1

u∗i ∂hi(x
∗) +

r∑
j=1

v∗j ∂lj(x
∗)

In other words, x solves minx L(x, u, v)

• Generally, this reveals a characterization of primal solutions
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• In particular, if this is satisfied uniquely (i.e., above problem has a unique minimizer), then the corre-
sponding point must be the primal solution
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