
10-725/36-725: Convex Optimization Fall 2016

Lecture 18: November 2
Lecturer: Lecturer: Javier Pena Scribes: Scribes: Yizhu Lin, Pan Liu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

18.1 Review on Primal-dual interior-poit methods

Consider a convex minimization problem, assuming f, h convex and differetiable, and strong duality holds,

min
x

f(x)

subject to Ax = b

h(x) ≤ 0

The central path equtions:

∇f(x) +∇h(x)u+AT v = 0

Uh(x) + τ1 = 0

Ax− b = 0

u,−h(x) > 0

Let w = (x, u, v), then the residuals

r(w) = r(x, u, v) :=

∇f(x) +∇h(x)u+AT v
Uh(x) + τ1
Ax− b


The Primal-dual interior-point algorithm is to apply Newton method on the central path equation, we first
compute current residual based on current (x, u, v), then compute the Newton step (∆x,∆u∆v) by solving∇2f(x) +

∑
i ui∇2hi(x) ∇h(x) AT

U∇h(x)T H(x) 0
A 0 0

∆x
∆u
∆v

 = −r(x, u, v)

Finally we compute a step length θ, and update

(x+, u+, v+) := (x, u, v) + θ(∆x,∆u,∆v)

At each Newton update

Suppose ∆w = (∆x,∆u,∆v) = −r′(w)r(w)

r(w + θw) ≈ r(w) + r′(w)θ∆w

≈ r(w) + θr′(w)∆w, where r′(w)∆w = −r(w) by construction

≈ (1− θ)r(w),

18-1

18-2 Lecture 18: November 2

Note if r is linear, consider the pure Newton method where θ = 1 , we have

r(w + θw) ≈ (1− θ)r(w) = 0,

So it takes one complete Newton step to get the solution. This is also true if a block of r is linear, you can
reduce that linear block to zero in one Newton step.

18.2 Motivation for quasi-Newton methods

Consider a unconstrained, smooth optimization problem

min
x

f(x)

where f is twice differentiable. Note f don’t have to be convex, since quasi-Newton Method can be applied
byond convex optimization problems.
Recall two classic method, Gradient descent and Newton method. Newton method has quadratic convergence
property, Gradient descent has linear convergence. But Newton’s method has its trade-offs, it requires
computing Hessian ∇2f(x) and the Newton step p, where −∇2f(x)p = −∇f(x). Each of the two can be
expensive.
The idea of quasi-Newton is use something like a scaled gradient, B, than is an approximation of Hessian,
but B is easy to solve and Bp = −∇f(x) is easy to solve.

18.3 Quasi-Newton algorithm

18.3.1 Scant equation

The key idea to make the computation easier is to use information from the previous update in the current
update, i.e., use Bk as a warm start to compute Bk+1.
A reasonable requirement for Bk+1:

∇f(xk+1) = ∇f(xk) +Bk+1sk

or equivalently

Bk+1sk = ∇f(xk+1)−∇f(xk)

This is called the secant equation and written as

Bk+1sk = ykor simplyB+s = y

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
Consider the one dimensional case, secant equation tells that Bk is the slope between ∇f(x) and s. In
addition to secant equation, we also want

1. B+ symmetric;

2. B+ close to B;

3. B ⇒ B+ maintains positive definte

Lecture 18: November 2 18-3

18.3.2 Quasi-Newton algorithm

1. Compute the direction pk = −Bk−1∇f(xk) ;

2. Set xk+1 = xk + tkp
k ;

3. Update Bk+1 .

18.4 Most popular updates: SR1, DFP, BFGS, Broyden class

18.4.1 Symmetric rank-one update (SR1)

Update B by adding an rank-one matrix (we want the changes of B be parsimony):

Bk+1 = B + auuT

Plug-in secant equation:

y = B+s = Bs+ auuT s = Bs+ a(uT s)u

or

a(uT s)u = y −Bs

where a(uT s) is a scalar. Thus u has to be a multiple of y −Bs so secant equation can hold.
Solve for a, we get:

a =
1

(y −Bs)T s

B+ = B +
(y −Bs)(y −Bs)T

(y −Bs)T s

18.4.2 Sherman-Morrision-Woodbury formula

Note that when updating x,

x+ = x+ tp = x− tB−1∇f(x)

so we are also interested in updating the inverse of B.
In fact, by Sherman-Morrision-Woodbury formula, given a low-rank update of a matrix, the update on its
inverse is also easy.

Theorem 18.1 Sherman-Morrision-Woodbury formula
Assume A ∈ Rnxn , U, V ∈ Rnxd, d ≤ n. Then A+ UV T is nonsingular iff. I + V TA1U is nonsingular.
In that case

(A+ UV T)−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1

18-4 Lecture 18: November 2

A special case of SMW when the update is rank-one,

(A+ UV T)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Thus for SR1, the update on the inverse of B, H, is

H+ = H +
(s−Hy)(s−Hy)T

(s−Hy)T y

In SR1, there’s a shortcomings that if the denominator ≈ 0, SR1 may fail; and SR1 does not preserve positive
definiteness.

18.4.3 Davidon-Fletcher-Powell (DFP) update

To overcome shortcomings in SR1, we can try rank-two update

H+ = H + auuT + bvvT

Look at the secant equation on H instead of B:

B+s = y ⇔ H+y = s

We have

s−Hy = (auT y)u+ (bvT y)v

u, v are not uniquely determined, but we can take u = s, v = Hy to satisfy secant equation, then solving for
a, b we get

H+ = H − HyyTH

yTHy
+
ssT

yT s

By SMW we also have update on B:

B+ = (I − ysT

yT s
)B(I − syT

yT s
) +

yyT

yT s

We can see if B is positive definite, the first term in above equation is SPD, and the second term is positive,
so B+ is also positive definite, i.e, DFP preserves positive definiteness.

An alternative way to compute DFP is to find a closest B+ to B that is symmetric and satisfies secant
equation.
Solve:

min
B+
||W−1(B+ −B)W−T ||F

subject to B+ = (B+)T

B+s = y

where W ∈ Rnxn is nonsingular and such that WWT s = y.

Lecture 18: November 2 18-5

18.4.4 Broyden-Flentcher-Goldfarb-Shanno (BFGS) update

Same ideas as the DFP update but with roles of B and H exchanged, do update on H instead of B.
The solution to BFGS is similar to DFG, with swapping B and H, s and y:

B+ = B − BssTB

sTBs
+
yyT

yT s

H+ = (I − syT

yT s
)H(I − ysT

yT s
) +

ssT

yT s

From the equation above we can see that similar to DFP, BFGS also preserves positive definiteness.
BFGS is more popular than DFP for it has a self-correcting property, thus more robust.

18.4.5 The Broyden class

The Broyden class is an entire class of updates that have similar shape:

B+ = (1− φ)B+
BFGS + φB+

DFP , for φ ∈ R.

i.e, a combination of BFGS and DFP.

18.5 Superlinear convergence

The standard quasi-Newton Method algorithm:

Pick initial x0 and B0

For k = 0, 1, ...
•Solve Bkpk = −∇f(xk)
•Pick tk and let xk+1 = xk + tkp

k

•Update Bk to Bk+1

end for

Note if take B = I, this becomes Gradient descent, which has linear convergence; if take B = Hessian, this
becomes Newton method, which has quadratic convergence under certain conditions; if B ∈ Broyden class,
this is quasi-Newton method, the convergence rate is in between, superlinear convergence:

lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= 0.

This convergence rate relies on a more careful choice of step length:

f(x+ tp) ≤ f(x) + α1t∇f(x)T p, this ensures t not too large

and

∇f(x+ tp)T p ≥ α2t|∇f(x)T p|, this ensures t not too small

for 0 < α1 < α2 < 1.

18-6 Lecture 18: November 2

The convergence rate is a result from Dennis-Moré. Under suitable assumption, assumptions, DFP and
BFGS updates ensure

lim
k→∞

||∇f(xk)−∇2f(xk)pk||
||pk||

= 0

for pk = −Hk∇f(xk) and we get superlinear convergence.

18.6 Limited memory BFGS (LBFGS)

For large problems, exact quasi-Newton updates becomes too costly, since storing the complete H matrix is
expensive by itself.
In LBFGS, Instead of computing and storing H, compute an implicit modied version of H by maintaining
the last m pairs (y, s).
The BFGS method computes direction

p = −Hg, where g = ∇f(x),

Plug-in BFGS update on H, we have

H+g = (I − syT

yT s
)H(I − ysT

yT s
)g +

ssT g

yT s

= (I − syT

yT s
)H(g − sT g

yT s
y) +

sT g

yT s
s

= (I − syT

yT s
)p+ αs

= p+ (α− β)s

where

α =
sT g

yT s

q = g − sT g

yT s
y = g − αy

p = Hq

β =
syT

yT s

Hence Hg can be computed via two loops of length k if H is obtained after k BFGS updates. LBFGS
algorithm is then using information of the last few iterations:

1. q := −∇f(xk)

2. For i = k − 1, ...,min(k −m, 0)

α := (si)T g
(yi)T si

q := g − αy
end for

Lecture 18: November 2 18-7

3. p := H0,kq

4. For i = min(k −m, 0), ..., k − 1

β := (yi)T p
(yi)T si

q := g − αy
end for

5. return p

In step 3 H0,kq is the initial H. Popular choice:

H0,kq :=
((yk−1)T sk−1

(yk−1)T yk−1
I

