10-725/36-725: Convex Optimization	Fall 2016
Lecture 7: September 21	
Lecturer: Ryan Tibshirani	Scribes: Xiaoqi Chai, Ligong Han, Yang Zou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Review of Subgradients

A subgradient of a convex function $f : \mathbb{R}^n \to \mathbb{R}$ is any value $g \in \mathbb{R}^n$ such that

$$f(y) \ge f(x) + g^T(y - x), \forall y$$

It always exists (on the relative interior of the domain).

7.2 Subgradient Optimality Condition

7.2.1 Subgradient Optimality Condition

Lemma 7.1 For any function f (convex or not), x^* is a minimizer if and only if 0 is a subgradient of f at x^* :

$$f(x^*) = \min_{x} f(x) \Longleftrightarrow 0 \in \partial f(x^*)$$

 $\textbf{Proof:} \ f(x^*) = \min_x f(x) \Longleftrightarrow f(y) \ge f(x^*) \forall y \Longleftrightarrow f(y) \ge f(x^*) + 0^T (y - x^*) \forall y \Longleftrightarrow 0 \in \partial f(x^*) \qquad \blacksquare$

7.2.2 Derivation of First-Order Optimality Condition

If f is convex and differentiable, the subgradient optimality condition is equivalent to the first-order optimality condition.

Proof:

$$f(x^*) = \min_x f(x) \iff f(x^*) = \min_x f(x) + I_C(x)$$

$$\iff 0 \in \partial(f(x^*) + I_C(x^*))$$

$$\iff 0 \in \{\nabla f(x^*)\} + \mathcal{N}_C(x^*)$$

$$\iff -\nabla f(x^*) \in \mathcal{N}_C(x^*)$$

$$\iff -\nabla f(x^*)^T x^* \ge \nabla f(x^*)^T y, \text{ for all } y \in C$$

$$\iff \nabla f(x^*)^T (y - x^*) \ge 0, \text{ for all } y \in C$$

7.2.3 Example 1: Lasso optimality conditions

Given a lasso problem

$$\min_{\beta} \frac{1}{2} ||y - X\beta||_2^2 + \lambda ||\beta||_1,$$

where $y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}, \lambda \ge 0$, the subgradient optimality can be written as:

$$\begin{aligned} 0 \in \partial(\frac{1}{2}||y - X\beta||_{2}^{2} + \lambda||\beta||_{1}) &\iff 0 \in \{-X^{T}(y - X\beta) + \lambda\partial||\beta||_{1}\} \\ &\iff X^{T}(y - X\beta) = \lambda v \\ &\iff \begin{cases} X_{i}^{T}(y - X\beta) = \lambda \mathrm{sign}(\beta_{i}), & \text{if } \beta_{i} \neq 0 \\ |X_{i}^{T}(y - X\beta)| \leq \lambda, & \text{if } \beta_{i} = 0 \end{cases} \end{aligned}$$

where $v \in \partial ||\beta||_1$

$$v_i \in \begin{cases} \{1\} & \text{if } \beta_i \ge 0\\ \{-1\} & \text{if } \beta_i \le 0, i = 1, \dots, p\\ [-1, 1] & \text{if } \beta_i = 0 \end{cases}$$

• This provides a way to check lasso optimality

7.2.4 Example 2: Soft-thresholding

Consider the simpled lasso problem where X = I, from the example 1 the subgradient optimality conditions become:

$$\begin{cases} y_i - \beta_i = \lambda \operatorname{sign}(\beta_i), & \text{ if } \beta_i \neq 0\\ |y_i - \beta_i \leq \lambda|, & \text{ if } \beta_i = 0 \end{cases}$$

The solution can be solved from the optimality conditions. It is $\beta = S_{\lambda}(y)$, where $S_{\lambda}(y)$ is the soft-thresholding operator.

$$[S_{\lambda}(y)]_{i} = \begin{cases} y_{i} - \lambda & \text{if } y_{i} \ge \lambda \\ 0 & \text{if } -\lambda \le y_{i} \le \lambda, i = 1, \dots, n \\ y_{i} + \lambda & \text{if } y_{i} \le -\lambda \end{cases}$$

The plot of a soft-thresholding function is the following.

Figure 7.1: A soft-thresholding function

7.2.5 Example 3: Distance to a convex set

The distance function to a closed, convex set C is a convex function, which is:

$$dist(x, C) = \min_{y \in C} ||y - x||_2$$
$$= ||x - P_C(x)||_2$$
$$\ge 0$$

where $P_C(X)$, is the projection of x onto C.

• The subdifferential of the distance function $\partial \operatorname{dist}(x, C)$ only has one element, so $\operatorname{dist}(x, C)$ is differentiable and this is its gradient.

Proof: let $u = P_C(x)$.

$$\partial \text{dist}(x, C) = \{\frac{x - u}{||x - u||_2}\}$$

By the first-order optimality conditions,

$$(x-u)^{T}(y-u) \leq 0 \text{ for all } y \in C$$

$$C \subseteq H = \{y : (x-u)^{T}(y-u) \leq 0\}$$

$$(x-u)^{T}(y-u) \leq 0$$

$$\operatorname{dist}(y,C) \geq 0$$

$$\operatorname{dist}(y,C) \geq \frac{(x-u)^{T}(y-u)}{||x-u||_{2}}$$

(ii) For $y \notin H$, $(x-u)^T(y-u) = ||x-u||_2 ||y-u||_2 \cos \theta$, where θ is the angle between x-u and y-u.

$$\frac{(x-u)^T(y-u)}{||x-u||_2} = ||y-u||_2 \cos \theta = \text{dist}(y,H) \le \text{dist}(y,C)$$

Therefore, for any y,

$$dist(y,C) \ge \frac{(x-u)^T(y-u)}{||x-u||_2}$$

= $\frac{(x-u)^T(y-x+x-u)}{||x-u||_2}$
= $||x-u||_2 + (\frac{x-u}{||x-u||_2})^T(y-x)$

Hence, $g = \frac{x-u}{||x-u||_2}$ is a subgradient of dist(x, C) at x.

Figure 7.2: Diagram of the example 3

7.3 Subgradient Method

Like gradient descent, but replacing gradients with subgradients.

$$x^{(k)} = x^{(k-1)} - t_k \cdot g^{(k-1)}, k = 1, 2, 3, \dots$$

where $g^{(k-1)} \in \partial f(x^{(k-1)})$, any subgradient of f at $x^{(k-1)}$ NOT necessarily descent!

7.3.1 Step size choices

- Fixed step sizes: $t_k = t$ all $k = 1, 2, 3, \ldots$
- Diminishing step sizes:

$$\sum_{k=1}^{\infty} t_k^2 < \infty, \quad \sum_{k=1}^{\infty} t_k = \infty$$

Aside: $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}, \sum_{k=1}^{\infty} \frac{1}{k} = \infty$

7.3.2 Convergence analysis

Assume that f convex, $dom(f) = \mathcal{R}^n$, and also that f is Lipschitz with G > 0, i.e.

$$|f(x) - f(y)| \le G ||x - y||_2$$

for all x, y.

Theorem 7.2 For a fixed step size t, subgradient method satisfies

$$\lim_{k\to\infty}f(x_{best}^{(k)})\leq f^*+G^2t/2$$

Theorem 7.3 For diminishing step sizes, subgradient method satisfies

$$\lim_{k \to \infty} f(x_{best}^{(k)}) = f^*$$

7.3.2.1 Converge rate

The basic inequality:

$$f(x_{best}^{(k)}) - f(x^*) \le \frac{R^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

For fixed step sizes t,

$$f(x_{best}^{(k)}) - f^* \le \frac{R^2}{2kt} + \frac{G^2t}{2}$$

For this to be $\leq \epsilon$, choose $t = \epsilon/G^2$, and $k = R^2 G^2 / epsilon^2$ (converge rate $O(1/\epsilon^2)$), much slower than gradient descent $O(1/\epsilon)$)

7.3.2.2 Polyak step sizes

When the optimal value f^* is known, take

$$t_k = \frac{f(x^{(k-1)}) - f^*}{\|g^{(k-1)}\|_2^2}, k = 1, 2, 3, \dots$$

 f^* can be estimated, gives same rate.

With Polyak step sizes, can show subgradient method converges to optimal value. Converge rate is still $O(1/\epsilon^2)$.

7.3.2.3 Can we do better?

Theorem 7.4 (Nesterov): For any $k \leq n-1$ and starting point $x^{(0)}$, there is a function in the problem class such that any nonsmooth first-order method satisfies

$$f(x^{(k)}) - f^* \ge \frac{RG}{2(1 + \sqrt{k+1})}$$