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7.1 Review of Subgradients

A subgradient of a convex function f : Rn → R is any value g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x),∀y

It always exists (on the relative interior of the domain).

7.2 Subgradient Optimality Condition

7.2.1 Subgradient Optimality Condition

Lemma 7.1 For any function f (convex or not), x∗ is a minimizer if and only if 0 is a subgradient of f at
x∗:

f(x∗) = min
x
f(x)⇐⇒ 0 ∈ ∂f(x∗)

Proof: f(x∗) = minx f(x)⇐⇒ f(y) ≥ f(x∗)∀y ⇐⇒ f(y) ≥ f(x∗) + 0T (y − x∗)∀y ⇐⇒ 0 ∈ ∂f(x∗)

7.2.2 Derivation of First-Order Optimality Condition

If f is convex and differentiable, the subgradient optimality condition is equivalent to the first-order opti-
mality condition.
Proof:

f(x∗) = min
x
f(x)⇐⇒ f(x∗) = min

x
f(x) + IC(x)

⇐⇒ 0 ∈ ∂(f(x∗) + IC(x∗)

⇐⇒ 0 ∈ {∇f(x∗)}+NC(x∗)

⇐⇒ −∇f(x∗) ∈ NC(x∗)

⇐⇒ −∇f(x∗)Tx∗ ≥ ∇f(x∗)T y, for all y ∈ C
⇐⇒ ∇f(x∗)T (y − x∗) ≥ 0, for all y ∈ C

7-1



7-2 Lecture 7: September 21

7.2.3 Example 1: Lasso optimality conditions

Given a lasso problem

min
β

1

2
||y −Xβ||22 + λ||β||1,

where y ∈ Rn, X ∈ Rn×p, λ ≥ 0, the subgradient optimality can be written as:

0 ∈ ∂(
1

2
||y −Xβ||22 + λ||β||1)⇐⇒ 0 ∈ {−XT (y −Xβ) + λ∂||β||1}

⇐⇒ XT (y −Xβ) = λv

⇐⇒

{
XT
i (y −Xβ) = λsign(βi), if βi 6= 0

|XT
i (y −Xβ)| ≤ λ, if βi = 0

where v ∈ ∂||β||1

vi ∈


{1} if βi ≥ 0

{−1} if βi ≤ 0, i = 1, . . . , p

[−1, 1] if βi = 0

• This provides a way to check lasso optimality

7.2.4 Example 2: Soft-thresholding

Consider the simpled lasso problem where X = I, from the example 1 the subgradient optimality conditions
become: {

yi − βi = λsign(βi), if βi 6= 0

|yi − βi ≤ λ|, if βi = 0

The solution can be solved from the optimality conditions. It is β = Sλ(y), where Sλ(y) is the soft-
thresholding operator.

[Sλ(y)]i =


yi − λ if yi ≥ λ
0 if − λ ≤ yi ≤ λ, i = 1, . . . , n

yi + λ if yi ≤ −λ

The plot of a soft-thresholding function is the following.
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Figure 7.1: A soft-thresholding function

7.2.5 Example 3: Distance to a convex set

The distance function to a closed, convex set C is a convex function, which is:

dist(x,C) = min
y∈C
||y − x||2

= ||x− PC(x)||2
≥ 0

where PC(X), is the projection of x onto C.

• The subdifferential of the distance function ∂dist(x,C) only has one element, so dist(x,C) is differ-
encitable and this is its gradient.

Proof: let u = PC(x).

∂dist(x,C) = { x− u
||x− u||2

}

By the first-order optimality conditions,

(x− u)T (y − u) ≤ 0 for all y ∈ C

C ⊆ H = {y : (x− u)T (y − u) ≤ 0}

(i) For y ∈ H,
(x− u)T (y − u) ≤ 0

dist(y, C) ≥ 0

dist(y, C) ≥ (x− u)T (y − u)

||x− u||2
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(ii) For y /∈ H, (x− u)T (y − u) = ||x− u||2||y − u||2 cos θ, where θ is the angle between x− u and y − u.

(x− u)T (y − u)

||x− u||2
= ||y − u||2 cos θ = dist(y,H) ≤ dist(y, C)

Therefore, for any y,

dist(y, C) ≥ (x− u)T (y − u)

||x− u||2

=
(x− u)T (y − x+ x− u)

||x− u||2

= ||x− u||2 + (
x− u
||x− u||2

)T (y − x)

Hence, g = x−u
||x−u||2 is a subgradient of dist(x,C) at x.

Figure 7.2: Diagram of the example 3

7.3 Subgradient Method

Like gradient descent, but replacing gradients with subgradients.

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . .

where g(k−1) ∈ ∂f(x(k−1)), any subgradient of f at x(k−1)

NOT necessarily descent!
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7.3.1 Step size choices

• Fixed step sizes: tk = t all k = 1, 2, 3, . . .

• Diminishing step sizes:
∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞

Aside:
∑∞
k=1

1
k2 = π2

6 ,
∑∞
k=1

1
k =∞

7.3.2 Convergence analysis

Assume that f convex, dom(f) = Rn, and also that f is Lipschitz with G > 0, i.e.

|f(x)− f(y)| ≤ G‖x− y‖2

for all x, y.

Theorem 7.2 For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f

∗ +G2t/2

Theorem 7.3 For diminishing step sizes, subgradient method satisfies

lim
k→∞

f(x
(k)
best) = f∗

7.3.2.1 Converge rate

The basic inequality:

f(x
(k)
best)− f(x∗) ≤

R2 +G2
∑k
i=1 t

2
i

2
∑k
i=1 ti

For fixed step sizes t,

f(x
(k)
best)− f

∗ ≤ R2

2kt
+
G2t

2

For this to be ≤ ε, choose t = ε/G2, and k = R2G2/epsilon2 (converge rate O(1/ε2), much slower than
gradient descent O(1/ε))

7.3.2.2 Polyak step sizes

When the optimal value f∗ is known, take

tk =
f(x(k−1))− f∗

‖g(k−1)‖22
, k = 1, 2, 3, . . .

f∗ can be estimated, gives same rate.

With Polyak step sizes, can show subgradient method converges to optimal value. Converge rate is still
O(1/ε2).
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7.3.2.3 Can we do better?

Theorem 7.4 (Nesterov): For any k ≤ n − 1 and starting point x(0), there is a function in the problem
class such that any nonsmooth first-order method satisfies

f(x(k))− f∗ ≥ RG

2(1 +
√
k + 1)


