
Homework 4

Convex Optimization 10-725/36-725

Due Friday November 2 at 11:59pm
Submit your work as a single PDF on Gradescope, including the source code.

Make sure to prepare your solution to each problem on a separate page.
On Gradescope, please select source code along with the corresponding problem.

Please choose either Q1 or Q2 (Score = max(Q1,Q2) + Q3 + Q4).

Total: 61 points

1 Nuclear norm, duality, and matrix completion (17 pts) [Po-
wei & Akash]

In this problem, we will take a look at convex optimization problems involving matrix variables. We
touched on these a little bit in class, and while they might seem somewhat abstract, these sorts of
problems are very much connected to real-world applications like Netflix’s movie recommendation
engine (you are welcome to ask us for further details here).
Let X ∈ Rm×n be a matrix. The trace norm (also known as the nuclear norm) of a matrix X, which
we write as ‖X‖tr, can be defined as the sum of the singular values of X.

(a, 5pts) Show that computing the trace norm of a matrix, i.e., computing ‖X‖tr, can be expressed as
the following (convex) optimization problem:

maximize
Y ∈Rm×n

tr(XTY )

subject to

[
Im Y
Y T In

]
� 0,

(1)

where Ip is the p × p identity matrix. (By the way, problem (1) is a semidefinite program;
more on this in part (d) below.)

Hint: recall that the trace norm is the dual of the operator norm; also, think about using the
“Schur complement” identity here. A good reference for this is Section A.5.5 in the “Convex
Optimization” book, by Stephen Boyd and Lieven Vandenberghe.

(b, 5pts) Show that the dual problem associated with (1) can be expressed as

minimize
W1∈Sm,
W2∈Sn

tr(W1) + tr(W2)

subject to

[
W1 (1/2)X

(1/2)XT W2

]
� 0,

(2)

where, just to remind you, Sp is the space of p× p real, symmetric matrices.

Hint: even though this is a matrix-variate problem, you can just go through the same steps as
if it were a vector-variate problem (form the Lagrangian, maximize it over the primal variables,
etc.) Recall that a succint way to write the inner product between matrices A,B is tr(ATB)
(this is just the usual inner product, once we unravel them into long vectors).
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(c, 2pts) Show that the optimal values for problems (1) and (2) are equal to each other, and that both
optimal values are attained.

(d, 5pts) In the matrix completion problem, we want to find a matrix X ∈ Rm×n of low rank that is
close, in a squared error sense, to some observed matrix Z ∈ Rm×n. We do not assume that all
of the entries of Z are observed, so we will look at the squared error over Z’s observed entries
only, which we store in a set Ω of (observed) row and column indices. Putting all this together
leads us to the following (convex) optimization problem:

minimize
X∈Rm×n

∑
(i,j)∈Ω(Xij − Zij)2 + λ‖X‖tr, (3)

with tuning parameter λ > 0.

Show that problem (3) can be expressed as a semidefinite program (SDP) of the form

minimize
x∈Rp

cTx

subject to x1A1 + · · ·+ xpAp � B,

for some fixed c,B,Ai, i = 1, . . . , p.

Hint: you may start by considering the following constrained problem:

minimize
X∈Rm×n

‖X‖tr
subject to

∑
(i,j)∈Ω(Xij − Zij)2 ≤ s,

which is equivalent to our original penalized problem, for some s > 0; now you will probably
need to use each of the above parts (in different ways) here to recast the above in SDP form.

2 Sparse eigenvectors via the barrier method (17 pts) [Po-
Wei]

In this problem we consider finding a sparse “eigenvector” of a matrix A � 0.

(a, 1pt) Consider solving the optimization problem

max
x∈Rn

xTAx

subject to ‖x‖2 = 1

‖x‖1 ≤ C.

Is this problem convex? Why or why not?

(b, 1pt) Consider the matrix-variate problem

max
X∈Sn

trAX

subject to X � 0

trX = 1,

rank(X) = 1,∑
i,j

|Xij | ≤ C2.

Is this problem convex? Why or why not?
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(c, 4pts) Prove that the problems in parts (a) and (b) are equivalent. Hint: if X is rank 1, then we
can write it as X = xxT for some vector x.

(d, 2pts) Now, consider the matrix-variate problem

max
X∈Sn

trAX

subject to X � 0

trX = 1∑
i,j

|Xij | ≤ C2.

Is this problem convex? What is the relationship between this problem and that from part (b)?

(e, 4pts) Form the logarithmic barrier for the constraint
∑
i,j |Xij | ≤ C2 and use this along with

the logarithmic barrier for X � 0 (φ(X) = log detX) to modify the problem in part (d) to have a
smooth objective and equality constraint.

(f, 5pts) Setup and describe the iterations of the barrier method for the problem in part (d), explicitly
deriving the Newton update for X(k).

3 Second Order Methods for Logistic Regression (22 pts)
[Akash]

In this problem, we will try to classify a viewer’s age group from his movie ratings. We formulate the
problem as a binary classification with output label y ∈ {0, 1}n, corresponding to whether a person‘s
age is under 40, and input features X ∈ Rn×(p+1). Similarly to previous homework problems, the
first column of X is taken to be 1n to account for the intercept term. We will apply second order
methods to solve the logistic regression problem.
We model each yi|xi with the probabilistic model

log

(
pβ(yi = 1|xi)

1− pβ(y = 1|xi)

)
= log

(
µi

1− µi

)
= (Xβ)i,

for i = 1, . . . , n, β ∈ Rp+1. We use β0 to denote the intercept and β1:p for the rest of the weights.

(a) (2 pts) First, show that the negative (conditional) log likelihood (NLL) under the logistic prob-
ability model can be expressed as:

l(β) = −
n∑
i=1

log(pβ(yi|xi)) = −
n∑
i=1

yi(Xβ)i +

n∑
i=1

log(1 + exp{(Xβ)i}),

Hint: model yi|xi as a bernoulli random variable with parameter µi = pβ(yi = 1|xi).

(b) In this part of the problem, we will implement Newton’s method for the nonpenalized logis-
tic regression problem and see that in this context, Newton’s method is known as Iteratively
Reweighted Least Squares (IRLS).

(i, 1pt) Express the gradient and the Hessian of the NLL in terms of X, y, and µ.
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(ii, 1pt) Write the Newton update for β using the above gradient and Hessian, using t to denote
step-size.

(iii, 1pts) Show that the Newton update has the form of a weighted least-squares estimation problem.
This is why in this context, Newton’s method is known as IRLS.

(iv, 1pts) Given X and y, write out the steps for performing IRLS to estimate β̂. Assume a fixed
step size t in the steps.

(v, 3pts) Now, implement IRLS with backtracking using the movie data set on the website (in
hwk4 gs3.zip, for this homework, not the second one). Initialize your weights with zeros.
Use α = 0.01 and shrink parameter β = 0.9 for backtracking. You can stop IRLS when the
change between consecutive objective values is less than 1e-6. Report both the train and
test errors of classifying whether a person is under 40. Plot f (k) − f? versus k, where f (k)

denotes the objective value at outer iterations k of IRLS, and the optimal objective value
is f? = 186.637 on a semi-log scale (i.e. where the y-axis is in log scale).

(c) Now, we introduce regularization to the NLL to improve our test error. The problem becomes:

min
β∈Rp+1

l(β) + λ‖β1:p‖1 (4)

(i, 2pts) Rewrite (4) as a problem that has a smooth criterion, aims to preserve the sparsity of
the original problem, and can be solved by an interior point method. (Hint: consider
introducing a new variable and corresponding inequality constraints).

(ii, 3pts) Describe the iterations of the barrier method for the problem in (i), explicitly deriving the
Newton updates.

(iii, 4pts) Implement the barrier method described above. For the barrier parameters t(the multiplier
for the original criterion in (4)) and µ(the constant by which t increases at each outer
iteration of the barrier method), use µ = 20 and start with t = 5. A good number for
m(the constant that, together with t, bounds the duality gap) is the number of constraints
in the barrier problem. For backtracking during the Newton method steps, use α = 0.2 and
β = 0.9. You can use 1e-9 as the stopping threshold for both the Newton method and the
barrier method. Remember to initialize the centering Newton method step with a strictly
feasible point (hint: in MATLAB, one simple way to find such a point is with linprog).

Use the barrier method with λ = 15 to classify whether a viewer is under 40. Report the
train and test classification errors. Report the number of zeros at the solution β?. Here we
consider any number with absolute value under 1e-10 to be zero.

(iv, 4 pts) Now, implement proximal gradient descent with backtracking for logistic regression with
lasso penalty. You can refer back to the group lasso problem in homework 2 to help you in
your implementation.

Using λ = 15, run proximal gradient descent (with backtracking line search, with shrinkage
parameter β = 0.5) on the training data.

To compare the convergence of both the barrier method and the proximal gradient descent,
plot f (k)−f? versus k, where f (k) denotes the objective value at total number of iterations
k of the algorithms, and the optimal objective value is f? = 306.476 on a semi-log scale
(i.e. where the y-axis is in log scale). Plot these in the same figure.

To be clear, when counting total number of iterations, each backtracking iteration counts
as 1 iteration (for prox gradient descent), and each inner Newton iteration counts as 1
iteration (for log-barrier method).

Attach all relevant code to the end of this problem.
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4 Interior Point Methods for SVMs [Wenbo] (22 pts)

Overview In this question we will continue playing with the same kernel support vector machine
as we did in last homework. Recall that in homework 3 we have developed the dual optimization
problem for support vector machine with radial basis function (RBF) kernel, and solved it using
standard QP solver. This time, we will write our own solver, and solve the kernel-SVM using the
barrier method and the primal-dual interior point method.
Following homework 3, we will be using the same dataset with inputs X ∈ R863×2 and labels
y ∈ {−1, 1}863 from data.txt on the class website.

Kernel SVM Recall from homework 3, the primal optimization of kernel SVM is

minimize
β,ξi

1

2
||β||22 + C

n∑
i=1

ξi

subject to yi(β
Tφ(xi) + β0) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

where ξ1, . . . , ξn are the slack variables. This is equivalent to solving the following dual optimization
problem

maximize
w

1Tw − 1

2
wT K̃w

subject to 0 ≤ w ≤ C1, wT y = 0
(5)

where w is the dual variable, Kij = 〈φ(xi), φ(xj)〉, and K̃ij = yiyjKij .
Again, recall that the support vectors correspond to the instances with the dual variable wi > 0.
The optimal primal vector β∗ can be represented in terms of the dual optimal w∗i , i = 1, . . . , n as
β∗ =

∑n
i=1 w

∗
i yiφ(xi). To solve for β∗0 from the dual, we can pick any instance j that lies on the

margin, and compute β∗0 as

β∗0 = yj − (β∗)Tφ(xj) = yj −
n∑
i=1

w∗i yiKij

In practice, in order to reduce the variance, we can take the average as

β∗0 =
1

|J |
∑
j∈J

(
yj −

n∑
i=1

w∗i yiKij

)
(6)

where J is the set of instances on the margin.
Lastly, the prediction for a given vector x ∈ Rd can be calculated as follows:

ŷ = sign

(
n∑
i=1

w∗i yi〈φ(x), φ(xi)〉+ β∗0

)
= sign

(
n∑
i=1

w∗i yiK(x, xi) + β∗0

)
(7)

The RBF kernel is expresses as

〈φ(xi), φ(xj)〉 = Kij = exp
(
−γ||xi − xj ||22

)
where we fix γ = 500.
Please submit your code as an appendix to this problem.

(a) Barrier Method
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(i, 5pts) Derive the gradient and the Hessian of the dual criterion f(w), and of the log barrier
objective of the form tf(w) + g(w), where g(w) is the log barrier term which takes the role
of the inequality constraint. (Note, the equality constraint remains unchanged in the log
barrier problem!) Confirm that the Hessian only changes from that of the original version
in the diagonal entries. (Hint: This may be helpful in understanding the update directions
in the interior point implementation in part (b).)

(ii, Bonus question, 5pts) Implement the barrier method as described in class to solve the SVM dual. Note, you
will be using an equality-constrained Newton method with backtracking, in the barrier
method updates. Set C = 0.1. Using initial t = 10000 and µ = 4, run your barrier method
until m/t < 10−8. For the inter Newton centering step, run until the Newton decrement
1
2λ(x)2 < 10−16.

Several steps you should address:

1) Describe how to obtain an initial feasible point in our problem.

2) Describe how to obtain the equality-constrained Newton update direction.

3) Describe the stopping rule for in terms of the Newton decrement, using the equality-
constrained Newton direction update. Note, your stopping criterion should be suffi-
ciently small, for your inner Newton to have good precision.

4) Describe how to find an initial step size prior backtracking step. (Hint: the key is to
choose a step size that would allow the upcoming update to be feasible; there are several
ways to do this.)

5) For backtracking line search, you can use α = 0.01 and β = 0.5, per notation in the
lecture notes.

Plot the objective value versus iterations. Report the optimal objective value at the optimal
training weights w∗: f∗ = 1

2 (w∗)T K̃w∗ − 1Tw∗. Report the number of support vectors,
considering only w∗ > 10−5. Use the optimal w∗ to do prediction, report classification
accuracy. A good check is to see if your answer agrees with (b) (or with standard QP
solver).

(b) Primal-Dual Interior Point Method

(i, 2pts) For a given t > 0, list the perturbed KKT condition for this problem.

(ii, 2pts) Let ui ≥ 0 be the dual variable correspond to the inequality constraint −wi ≤ 0,∀i and
vi ≥ 0 be the dual variable correspond to the inequality constraint wi ≤ C, ∀i. Let λ be the
dual variable correspond to the equality constraint yTw = 0. Write down the expression
for the primal residual rprim, the dual residual rdual and the centrality residual rcent.

(iii, 2pts) Define the residual vector r(w, u, v, λ) = (rdual, rcent, rprim) and z = (w, u, v, λ). The
primal-dual interior point method is trying to find an update direction ∆z = (∆w,∆u,∆v,∆λ)
such that r(z + ∆z) = 0. However, in general r(z + ∆z) = 0 corresponds to a sys-
tem of nonlinear equations that does not admit closed-form solution, so instead we make
a first-order approximation to r(z + ∆z) and solves the corresponding linear system:
r(z + ∆z) ≈ r(z) + Dr(z)∆z = 0. Write down the linear system to be solved in order to
get ∆z. ∆z is also known as the Newton direction.

(iv, 2pts) Primal-dual interior point method requires a strictly feasible point of (5) as a start point.
Form a linear program that can be used to find such a strictly feasible initial point.

(v, 9pts) Implement the primal-dual interior point method to solve the minimization problem you
formed in (i). We fix C = 0.1, µ = 1000. You should stop your algorithm when both the
following two conditions are met:

• (||rprim||22 + ||rdual||22)1/2 ≤ 10−6.
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• The surrogate duality gap is less than or equal to 2× 10−6.

Here is a list of tips that might be helpful to you:

• Use the LP formed in the last question to find a strictly feasible initial point.

• After obtaining each Newton direction, it is important to compute a corresponding
step size such that both the primal and the dual variables are feasible.

• For backtracking line search, you can use α = 0.01 and β = 0.5 (Note this β corre-
sponds to the parameter to shrink the step size, not the β in the primal SVM).

• It is important to tune to barrier parameter µ such that your algorithm stops within
a fair amount of iterations. As a reference, the TA’s implementation stops in 99
iterations.

Plot the objective value versus iterations. Report the function value at the optimal w∗:
f∗ = 1

2 (w∗)T K̃w∗−1Tw∗. Report the number of support vectors. Here we consider any w∗

that is less than 10−5 to be 0. Use the optimal w∗ to do prediction and report classification
accuracy.

Please submit your code as an appendix to this problem.

7


	Nuclear norm, duality, and matrix completion (17 pts) [Po-wei & Akash]
	Sparse eigenvectors via the barrier method (17 pts) [Po-Wei]
	Second Order Methods for Logistic Regression (22 pts) [Akash]
	Interior Point Methods for SVMs [Wenbo] (22 pts)

