Alternating Direction Method of Multipliers

Ryan Tibshirani
Convex Optimization 10-725

Last time: dual ascent

Consider the problem
mxin f(x) subject to Ax =1b
where f is strictly convex and closed. Denote Lagrangian
L(z,u) = f(z) + ul (Az — b)
Dual gradient ascent repeats, for k =1,2,3,...
2®) = argmin L(z,u*1)
x

u®) = =D g (AR — p)

Good: x update decomposes when f does. Bad: require stringent
assumptions (strong convexity of f) to ensure convergence

Augmented Lagrangian method (also called method of multipliers)
considers the modified problem, for a parameter p > 0,

xT

min Fa)+ Ell Az — bl
subject to Ax =b

uses modified Lagrangian
Ly(x,w) = f(2) +u” (Az = b) + L] Az — |3

and repeats, for k=1,2,3,...

k) = argmin Lp(x,u(kfl))

T

u®) = o *=D 4 p(Az®) — p)

x(

Good: better convergence properties. Bad: lose decomposability

Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: combines
the best of both methods. Consider a problem of the form:

min f(x)+ g(z) subject to Ax + Bz =c

T,z
We define augmented Lagrangian, for a parameter p > 0,
Ly(z,z,u) = f(x) +g(2) + u’ (Az + Bz —¢) + gHAac + Bz — |3

We repeat, for k =1,2,3,...

2®) = argmin Lp(m,z(k_l),u(k_l))

k)

2F) = argmin Lp(x(k),z,u(k_l))

z

u® = =0 4 p(Az®) 4 B2 — ¢)

Convergence guarantees

Under modest assumptions on f, g (these do not require A, B to
be full rank), the ADMM iterates satisfy, for any p > 0:
e Residual convergence: r®) = Az®) + Bz(K) — ¢ — 0 as
k — oo, i.e., primal iterates approach feasibility
e Objective convergence: f(z®)) + g(z¥)) — f* 4 g*, where
f* =+ g” is the optimal primal objective value

e Dual convergence: u*) — u*, where w* is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method.
Theory still being developed, see, e.g., in Hong and Luo (2012),
Deng and Yin (2012), lutzeler et al. (2014), Nishihara et al. (2015)

Scaled form ADMM
Scaled form: denote w = u/p, so augmented Lagrangian becomes
Ly(z,2w) = f(2) +9(=) + Sl Az + Bz — e+ w]}3 - Lw]3
and ADMM updates become
2 = argmin f(z) + gHA:c + Bz*D — ¢ B2
=) = argmin g(z) + gHAa:(k) + Bz — c 4 w* V|2
w® = w(kz—l) + Az®) 4 BF) _ ¢

Note that here kth iterate w(*¥) is just a running sum of residuals:

k
0 = w® + 3 (459 + B0 —)
=1

Outline

Today:
e Examples, practicalities
e Consensus ADMM

e Special decompositions

Connection to proximal operators
Consider

min f(z)+g(r) <= min f(z)+ g(2) subject to = ==z

ADMM steps (equivalent to Douglas-Rachford, here):

2(k) — prOXf,l/p(Z(k_l) — w1

2k = proxg’l/p(m(k) + wk=)

w®) = =1 () _ ()

where proxy ;, is the proximal operator for f at parameter 1/p,
and similarly for prox, ,,

In general, the update for block of variables reduces to prox update
whenever the corresponding linear transformation is the identity

Example: lasso regression

Given y € R, X € R"™*P, recall the lasso problem:

1 2

min - ly — XB[13 + AllBllh

s 2

We can rewrite this as:
1
min lly = XB||3+ Mlell; subject to B —a =0
o

ADMM steps:

BE = (XTX + pI) M (XTy + p(a®V) —w*=1))
o) = 5, (8% 4 whD)
w® = ®=1) 4 g0 0

Notes:

The matrix X7 X + pI is always invertible, regardless of X

If we compute a factorization (say Cholesky) in O(p?) flops,
then each 3 update takes O(p?) flops

The o update applies the soft-thresolding operator S, which
recall is defined as

xi—1t x>t
[St(x)]; =10 t<x<t, j=1,...p
ﬂ?j+t r < —t

ADMM steps are “almost” like repeated soft-thresholding of
ridge regression coefficients

10

Comparison of various algorithms for lasso regression: 100 random
instances with n = 200, p = 50

—— Coordinate desc
—— Proximal grad
o —— Accel prox
? ~— ADMM (rho=50)
3 —— ADMM (rho=100)
= ADMM (rho=200)
b
x
= o
P
© -
E
IS
o
E
» 'cT)_
[}
—
o
7
Q
= T

Iteration k

Practicalities

In practice, ADMM usually obtains a relatively accurate solution in
a handful of iterations, but it requires a large number of iterations
for a highly accurate solution (like a first-order method)

Choice of p can greatly influence practical convergence of ADMM:

e p too large — not enough emphasis on minimizing f + g
e p too small — not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying p; it can work well in
practice, but does not have convergence guarantees

Like deriving duals, transforming a problem into one that ADMM
can handle is sometimes a bit subtle, since different forms can lead
to different algorithms

12

Example: group lasso regression

Given y € R, X € R"*P, recall the group lasso problem:

c
o1
min Slly = XBI5+ 2D cqllByll2

g=1
Rewrite as:
1 el
min Slly = X813+ /\;cgnagllz subject to 8 —a =0
ADMM steps:

ﬁ(k) _ (XTX +pI)—1(XTy +p(a(k—1) _ w(k—l)))
al? = Ry (B +wlFD), g=1,...G
w®) = k=D 4 gk) _ (k)

13

Notes:

The matrix X7 X + pI is always invertible, regardless of X

If we compute a factorization (say Cholesky) in O(p?) flops,
then each 3 update takes O(p?) flops

The o update applies the group soft-thresolding operator Ry,
which recall is defined as

Ri(z) = <1 - ”;’2>+x

Similar ADMM steps follow for a sum of arbitrary norms of as
regularizer, provided we know prox operator of each norm

ADMM algorithm can be rederived when groups have overlap
(hard problem to optimize in general!). See Boyd et al. (2010)

14

Example: sparse subspace estimation

Given S € S, (typically S = 0 is a covariance matrix), consider the
sparse subspace estimation problem (Vu et al., 2013):

max tr(SY) — A|lY||1 subject to Y € Fy

where Fj, is the Fantope of order k, namely
Fr={YeSP:0=Y <1, tr(Y) =k}

Note that when A = 0, the above problem is equivalent to ordinary
principal component analysis (PCA)

This above is an SDP and in principle solveable with interior point
methods, though these can be complicated to implement and quite
slow for large problem sizes

15

Rewrite as:

r}r/uZn —tr(SY) + 15, (Y) + M| Z]|1 subject to Y =2

ADMM steps are:

y®) = pr (201D — w1 4 g/p)
7)) — S)\/p(Y(k) + W k=1
wk) = k-1 L y&) _ 7k

Here Pr, is Fantope projection operator, computed by clipping the
eigendecomposition A = USUT, ¥ = diag(o, .. .,0p):

Pr (A) = UXUT, %y = diag(o1(0),...,0,(0))

where each 0;(6) = min{max{o; — 0,0},1}, and > 7, 0;(0) = k

16

Example: sparse + low rank decomposition

Given M € R™ "™ consider the sparse plus low rank decomposition
problem (Candes et al., 2009):

i Ll + A
min 1Ll + Al

)

subject to L+S=M
ADMM steps:

L™ = gt (M — §¢=D 4y (h=h)y

S = 8 (M — 10 1+ D)

w® —wk=1 4 pp — k) _ gk)

where, to distinguish them, we use S;\r/p for matrix soft-thresolding

and S&

Np for elementwise soft-thresolding

17

Example from Candes et al. (2009):

(a) Original frames

(c) Sparse S

18

Consensus ADMM

B
Consider a problem of the form: min Z fi(z)
i=1

The consensus ADMM approach begins by reparametrizing:
B

min Zfl x;) subject to x; =z, i=1,...B

Z1,---TB,T

This yields the decomposable ADMM steps:

a;gk):argmin fi(xi)—i-gﬂwz‘—ﬂ?()‘HU Y3, i=1,...B
U () k)

(k) — = (!

. Bizl<x’ +)

Write 7 = £ Zle x; and similarly for other variables. Not hard to
see that w®) = 0 for all iterations k >1

Hence ADMM steps can be simplified, by taking z(¥) = z(¥):

2" = argmin fi(ws) + Sllai -2V 4w V3, =18

T

w® = D 4 o 5w o1

(3 K3

To reiterate, the z;, ¢ = 1, ... B updates here are done in parallel

Intuition:

e Try to minimize each f;(z;), use (squared) {2 regularization to
pull each x; towards the average &

e If a variable z; is bigger than the average, then wj; is increased

e So the regularization in the next step pulls x; even closer

20

General consensus ADMM

B
Consider a problem of the form: min Z filalz 4 b;) + g(x)
i=1

For consensus ADMM, we again reparametrize:

min Zfza x; + b;) + g(x) subject to z; =z, i =1,..

Z1,..-TB,T

This yields the decomposable ADMM updates:

2 = argmin f;(a] ; + b;) + ng, —z®D o

1
T

(k—l)H2
) 25

i=1,...

2 = argmin %Hx —z®) — D12 4 g(a)

o =0V o, o1

1

.B

B

21

Notes:

It is no longer true that @) = 0 at a general iteration &, so
ADMM steps do not simplify as before

To reiterate, the z;, i = 1,... B updates are done in parallel

Each x; update can be thought of as a loss minimization on
part of the data, with /5 regularization

The x update is a proximal operation in regularizer g
The w update drives the individual variables into consensus

A different initial reparametrization will give rise to a different
ADMM algorithm

See Boyd et al. (2010), Parikh and Boyd (2013) for more details
on consensus ADMM, strategies for splitting up into subproblems,
and implementation tips

22

Special decompositions

ADMM can exhibit much faster convergence than usual, when we
parametrize subproblems in a “special way”

e ADMM updates relate closely to block coordinate descent, in
which we optimize a criterion in an alternating fashion across
blocks of variables

e With this in mind, get fastest convergence when minimizing
over blocks of variables leads to updates in nearly orthogonal
directions

e Suggests we should design ADMM form (auxiliary constraints)
so that primal updates de-correlate as best as possible

e This is done in, e.g., Ramdas and Tibshirani (2014), Wytock
et al. (2014), Barbero and Sra (2014)

23

Example: 2d fused lasso

Given an image Y € R%¥¢ equivalently written as y € R", recall
the 2d fused lasso or 2d total variation denoising problem:

o1 2
min 5 |[Y — O|fp + AZ (!@m = Oit1,5] +1055 — @m'+1|>
Z?]
o1 2
<= min glly -0z + AIDO]y

Here D € R™*" is a 2d difference operator giving the appropriate
differences (across horizontally and vertically adjacent positions)

24

First way to rewrite:
1 2 .
min 5”@/ — 0|5+ A||z][1 subject to 8 = Dz
32

Leads to ADMM steps:

k) — (I+pDTD>—1(y+pDT(Z(k—1) +w(k—1)))
S(k) — SA/p<D9(k) _ w(kfl))
wk) = k=1 4 (k=1) _ pylk)

Notes:

e The 6 update solves linear system in I + pL, with L = DTD
the graph Laplacian matrix of the 2d grid, so this can be done
efficiently, in roughly O(n) operations

e The z update applies soft thresholding operator S;

e Hence one entire ADMM cycle uses roughly O(n) operations

25

Second way to rewrite:

. 1)
min SV = HIE+ 2> (1Hiy = Hi,

i,J

+Vig = Vigl)

subject to H =V

Leads to ADMM steps:

a® -

Y—I—p(V(k 1 W(@—l)) .
FL)\/(I—i—p) , J=1 o d

I+p
(k) _ * (k=1) F_
v FLW< +w!) i=1,....d
wk) = yk=1) 4 H() — k)
Notes:
e Both H,V updates solve (sequence of) 1d fused lassos, where
we write FLid(a) = argmin, %Ha —z|3+7 Z?z_ll |

- 113z'+1\

26

e Critical: each 1d fused lasso solution can be computed exactly
in O(d) operations with specialized algorithms (e.g., Johnson,
2013; Davies and Kovac, 2001)

¢ Hence one entire ADMM cycle again uses O(n) operations

27

Comparison of 2d fused lasso algorithms: an image of dimension
300 x 200 (so n = 60,000)

Data Exact solution

28

Two ADMM algorithms, (say) standard and specialized ADMM:

— Standard
—— Specialized

f(k)—fstar
1le+04 1le+05
1 1

1e+03
1

1e+02
1

le+01
1

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

~

Standard ADMM Specialized ADMM
10 iterations 10 iterations

30

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

~

Standard ADMM Specialized ADMM
30 iterations 30 iterations

30

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

~

Standard ADMM Specialized ADMM
50 iterations 50 iterations

30

ADMM iterates visualized after k = 10, 30, 50, 100 iterations:

~

Standard ADMM Specialized ADMM
100 iterations 100 iterations

30

References

A. Barbero and S. Sra (2014), “"Modular proximal optimization
for multidimensional total-variation regularization”

S. Boyd and N. Parikh and E. Chu and B. Peleato and J.
Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

E. Candes and X. Li and Y. Ma and J. Wright (2009),
“Robust principal component analysis?”

N. Parikh and S. Boyd (2013), “Proximal algorithms”

A. Ramdas and R. Tibshirani (2014), “Fast and flexible
ADMM algorithms for trend filtering”

V. Vu and J. Cho and J. Lei and K. Rohe (2013), “Fantope

projection and selection: a near-optimal convex relaxation of

sparse PCA”

M. Wytock and S. Sra. and Z. Kolter (2014), “Fast Newton
methods for the group fused lasso”

31

