
Gradient de-
scent

Subgrad
method

Prox grad de-
scent

Stochastic
grad descent

Criterion smooth f any f smooth
+ simple,
f = g + h

smooth
+ simple,
f = g + h

Constraints projection
onto con-
straint set

projection
onto con-
straint set

constrained
prox operator

projection
onto con-
straint set

Opti pa-
rameters

fixed step size
(t ≤ 1/L) or
line search

diminishing
step sizes

fixed step size
(t ≤ 1/L) or
line search

fixed or di-
minishing
step sizes,
mini-batch
size

Iteration
cost

cheap (com-
pute gradient)

cheap (com-
pute subgra-
dient)

moderately
cheap (evalu-
ate prox)

very cheap
(compute
stochastic
gradient)

Rate O(1/ε)
(acceleration:
O(1/

√
ε),

strong
convexity:
O(log(1/ε)))

O(1/ε2) O(1/ε)
(acceleration:
O(1/

√
ε),

strong
convexity:
O(log(1/ε)))

O(1/ε2), but
practically
converges
rapidly at the
start
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Newton Barrier
method

Primal-dual
interior-point

Quasi-
Newton

Criterion twice
smooth f

twice
smooth f

twice
smooth f

twice
smooth f

Constraints equality con-
straints

equality, twice
smooth hi
(inequality
constraints)

equality, twice
smooth hi
(inequality
constraints)

unconstrained

Opti pa-
rameters

pure step size
(t = 1) or line
search

inner: pure
step size or
line search;
outer: barrier
parameter

line search for
step size, bar-
rier parameter

line search

Iteration
cost

moderate to
expensive
(compute
Hessian and
solve linear
system)

expensive to
very expen-
sive (one iter
solves one
smoothed
problem)

moderate to
expensive
(one iter
performs one
Newton step)

moderately
cheap (com-
pute gradi-
ents, inner
products;
no matrix
inversion)

Rate O(log log(1/ε))
(local rate)

O(log(1/ε))
(also rate for
total Newton
steps)

O(log(1/ε)) local superlin-
ear rate

2



Prox Newton Coordinate
descent

ADMM Frank-Wolfe

Criterion twice smooth
+ simple, f =
g + h

smooth +
separable,
f = g + h

block separa-
ble, f(x, z) =
g(x) + h(z)

smooth f

Constraints constrained
H-prox

separable con-
straints

always have
equality con-
straints; for
inequalities:
constrained
prox

any compact
constraint set
for which we
know linear
minimization
oracle

Opti pa-
rameters

pure step size
or line search

none augmented
Lagrangian
parameter

default step
sizes or linear
search

Iteration
cost

expensive to
very expen-
sive (evaluate
H-prox)

cheap to ex-
pensive (one
iteration per-
forms a full
cycle or co-
ordinate mini-
mizations)

cheap to
expensive
(one iteration
solves g, h
subproblems,
makes a dual
step)

moderately
cheap (one
iteration eva-
lutes linear
minimization
oracle)

Rate O(log log(1/ε))
(local rate)

same as prox
grad, but can
be faster in
practice

same as prox
grad, similar
in practice

same as prox
grad, but can
be slower in
practice
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