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Last time: Newton’s method

Consider the problem
min
x

f(x)

for f convex, twice differentiable, with dom(f) = Rn. Newton’s
method: choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk
(
∇2f(x(k−1))

)−1∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen by backtracking line search

If ∇f Lipschitz, f strongly convex, ∇2f Lipschitz, then Newton’s
method has a local convergence rate O(log log(1/ε))

Downsides:

• Requires solving systems in Hessian ← quasi-Newton

• Can only handle equality constraints ← this lecture
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An important variant is equality-constrained Newton: start with
x(0) such that Ax(0) = b. Then we repeat the updates

x+ = x+ tv, where

v = argmin
Az=0

∇f(x)T (z − x) + 1

2
(z − x)T∇2f(x)(z − x)

which keep x+ in feasible set Ax = b

Here v is characterized by KKT system

[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]

for some w. Hence Newton direction v is again given by solving a
linear system in the Hessian (albeit a bigger one)
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Hierarchy of second-order methods

Assuming all problems are convex, you can think of the following
hierarchy that we’ve worked through:

• Quadratic problems are the easiest: closed-form solution

• Equality-constrained quadratic problems are still easy: we use
KKT conditions to derive closed-form solution

• Equality-constrained smooth problems are next: use Newton’s
method to reduce this to a sequence of equality-constrained
quadratic problems

• Inequality-constrained and equality-constrained smooth
problems are what we cover now: use interior-point methods
to reduce this to a sequence of equality-constrained problems
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Log barrier function

Consider the convex optimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

Ax = b

We will assume that f , h1, . . . hm are convex, twice differentiable,
each with domain Rn. The function

φ(x) = −
m∑

i=1

log(−hi(x))

is called the log barrier for the above problem. Its domain is the
set of strictly feasible points, {x : hi(x) < 0, i = 1, . . .m}, which
we assume is nonempty. (Note this implies strong duality holds)
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Ignoring equality constraints for now, our problem can be written as

min
x

f(x) +

m∑

i=1

I{hi(x)≤0}(x)

11.2 Logarithmic barrier function and central path 563
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Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)

We can approximate the sum of indi-
cators by the log barrier:

min
x

f(x)− (1/t) ·
m∑

i=1

log(−hi(x))

where t > 0 is a large number

This approximation is more accurate for larger t. But for any value
of t, the log barrier approaches ∞ if any hi(x)→ 0
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Outline

Today:

• Central path

• Properties and interpretations

• Barrier method

• Convergence analysis

• Feasibility methods
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Log barrier calculus

For the log barrier function

φ(x) = −
m∑

i=1

log(−hi(x))

we have for its gradient:

∇φ(x) = −
m∑

i=1

1

hi(x)
∇hi(x)

and for its Hessian:

∇2φ(x) =

m∑

i=1

1

hi(x)2
∇hi(x)∇hi(x)T −

m∑

i=1

1

hi(x)
∇2hi(x)
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Central path

Consider barrier problem:

min
x

tf(x) + φ(x)

subject to Ax = b

The central path is defined as the solution x?(t) as a function of
t > 0

• Hope is that, as t→∞, we will have x?(t)→ x?, solution to
our original problem

• Why don’t we just set t to be some huge value, and solve the
above problem? Directly seek solution at end of central path?

• Problem is that this is seriously inefficient in practice

• Much more efficient to traverse the central path, as we will see
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An important special case: barrier problem for a linear program:

min
x

tcTx−
m∑

i=1

log(ei − dTi x)

The barrier function corresponds to polyhedral constraint Dx ≤ e

Gradient optimality condition:

0 = tc−
m∑

i=1

1

ei − dTi x?(t)
di

This means that gradient ∇φ(x?(t))
must be parallel to −c, i.e., hyper-
plane {x : cTx = cTx?(t)} lies tan-
gent to contour of φ at x?(t)

566 11 Interior-point methods

c

x⋆ x⋆(10)

Figure 11.2 Central path for an LP with n = 2 and m = 6. The dashed
curves show three contour lines of the logarithmic barrier function φ. The
central path converges to the optimal point x⋆ as t → ∞. Also shown is the
point on the central path with t = 10. The optimality condition (11.9) at
this point can be verified geometrically: The line cT x = cT x⋆(10) is tangent
to the contour line of φ through x⋆(10).

we see that x⋆(t) minimizes the Lagrangian

L(x,λ, ν) = f0(x) +

m∑

i=1

λifi(x) + νT (Ax − b),

for λ = λ⋆(t) and ν = ν⋆(t), which means that λ⋆(t), ν⋆(t) is a dual feasible pair.
Therefore the dual function g(λ⋆(t), ν⋆(t)) is finite, and

g(λ⋆(t), ν⋆(t)) = f0(x
⋆(t)) +

m∑

i=1

λ⋆
i (t)fi(x

⋆(t)) + ν⋆(t)
T
(Ax⋆(t) − b)

= f0(x
⋆(t)) − m/t.

In particular, the duality gap associated with x⋆(t) and the dual feasible pair λ⋆(t),
ν⋆(t) is simply m/t. As an important consequence, we have

f0(x
⋆(t)) − p⋆ ≤ m/t,

i.e., x⋆(t) is no more than m/t-suboptimal. This confirms the intuitive idea that
x⋆(t) converges to an optimal point as t → ∞.

Example 11.2 Inequality form linear programming. The dual of the inequality form
LP (11.8) is

maximize −bTλ
subject to ATλ+ c = 0

λ ≽ 0.

From the optimality conditions (11.9), it is clear that

λ⋆
i (t) =

1

t(bi − aT
i x⋆(t))

, i = 1, . . . , m,

(From B & V page 565)
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KKT conditions and duality

Central path is characterized by its KKT conditions:

t∇f(x?(t))−
m∑

i=1

1

hi(x?(t))
∇hi(x?(t)) +ATw = 0,

Ax?(t) = b, hi(x
?(t)) < 0, i = 1, . . .m

for some w ∈ Rm. But we don’t really care about dual variable for
barrier problem ...

From central path points, we can derive feasible dual points for our
original problem. Given x?(t) and corresponding w, we define

u?i (t) = −
1

thi(x?(t))
, i = 1, . . .m, v?(t) = w/t
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We claim u?(t), v?(t) are dual feasible for original problem, whose
Lagrangian is

L(x, u, v) = f(x) +

m∑

i=1

uihi(x) + vT (Ax− b)

Why?

• Note that u?i (t) > 0 since hi(x
?(t)) < 0 for all i = 1, . . . ,m

• Further, the point (u?(t), v?(t)) lies in domain of Lagrange
dual function g(u, v), since by definition

∇f(x?(t)) +
m∑

i=1

ui(x
?(t))∇hi(x?(t)) +AT v?(t) = 0

I.e., x?(t) minimizes Lagrangian L(x, u?(t), v?(t)) over x, so
g(u?(t), v?(t)) > −∞
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Duality gap

This allows us to bound suboptimality of f(x?(t)), with respect to
original problem, via the duality gap. We compute

g(u?(t), v?(t)) = f(x?(t)) +

m∑

i=1

u?i (t)hi(x
?(t)) +

v?(t)T (Ax?(t)− b)
= f(x?(t))−m/t

That is, we know that f(x?(t))− f? ≤ m/t

This will be very useful as a stopping criterion; it also confirms the
hope that x?(t)→ x? as t→∞
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Perturbed KKT conditions

We can now reinterpret central path (x?(t), u?(t), v?(t)) as solving
the perturbed KKT conditions:

∇f(x) +
m∑

i=1

ui∇hi(x) +AT v = 0

ui · hi(x) = −1/t, i = 1, . . .m

hi(x) ≤ 0, i = 1, . . .m, Ax = b

ui ≥ 0, i = 1, . . .m

Only difference between these and actual KKT conditions for our
original problem is second line: these are replaced by

ui · hi(x) = 0, i = 1, . . .m

i.e., complementary slackness, in actual KKT conditions
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Barrier method

The barrier method solves a sequence of problems

min
x

tf(x) + φ(x)

subject to Ax = b

for increasing values of t > 0, until duality gap satisfies m/t ≤ ε

We fix t(0) > 0, µ > 1. We use Newton to compute x(0) = x?(t), a
solution to barrier problem at t = t(0). For k = 1, 2, 3, . . .

• Solve the barrier problem at t = t(k), using Newton initialized
at x(k−1), to yield x(k) = x?(t)

• Stop if m/t ≤ ε, else update t(k+1) = µt

The first step above is called a centering step (since it brings x(k)

onto the central path)
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Considerations:

• Choice of µ: if µ is too small, then many outer iterations
might be needed; if µ is too big, then Newton’s method (each
centering step) might take many iterations

• Choice of t(0): if t(0) is too small, then many outer iterations
might be needed; if t(0) is too big, then the first Newton solve
(first centering step) might require many iterations

Fortunately, the performance of the barrier method is often quite
robust to the choice of µ and t(0) in practice

(However, note that the appropriate range for these parameters is
scale dependent)
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Example of a small LP in n = 50 dimensions, m = 100 inequality
constraints (from B & V page 571):572 11 Interior-point methods

Newton iterations
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Convergence analysis

Assume that we solve the centering steps exactly. The following
result is immediate

Theorem: The barrier method after k centering steps satisfies

f(x(k))− f? ≤ m

µkt(0)

In other words, to reach a desired accuracy level of ε, we require

log(m/(t(0)ε))

logµ

centering steps with the barrier method (plus initial centering step)
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Example of barrier method progress for an LP with m constraints
(from B & V page 575):

576 11 Interior-point methods

Newton iterations
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

Can see roughly linear convergence in each case, and logarithmic
scaling with m
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Seen differently, the number of Newton steps needed (to decrease
initial duality gap by factor of 104) grows very slowly with m:

576 11 Interior-point methods

Newton iterations
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

Note that cost of a single Newton step does depends on m (and
on problem dimension n)
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How many Newton iterations?

Informally, due to careful central path traversal, in each centering
step, Newton is already in quadratic convergence phase, so takes
nearly constant number of iterations

This can be formalized under self-concordance. Suppose:

• The function tf + φ is self-concordant

• Our original problem has bounded sublevel sets

Then we can terminate each Newton solve at appropriate accuracy,
and the total number of Newton iterations is still O(log(m/(t(0)ε))
(where constants do not depend on problem-specific conditioning).
See Chapter 11.5 of B & V

Importantly, tf + φ = tf −∑m
i=1 log(−hi) is self-concordant when

f, hi are all linear or quadratic. So this covers LPs, QPs, QCQPs
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Feasibility methods

We have implicitly assumed that we have a strictly feasible point
for the first centering step, i.e., for computing x(0) = x?, solution
of barrier problem at t = t(0). This is x such that

hi(x) < 0, i = 1, . . .m, Ax = b

How to find such a feasible x? By solving

min
x,s

s

subject to hi(x) ≤ s, i = 1, . . .m

Ax = b

The goal is for s to be negative at the solution. This is known as a
feasibility method. We can apply the barrier method to the above
problem, since it is easy to find a strictly feasible starting point
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Note that we do not need to solve this problem to high accuracy.
Once we find a feasible (x, s) with s < 0, we can terminate early

An alternative is to solve the problem

min
x,s

1T s

subject to hi(x) ≤ si, i = 1, . . .m

Ax = b, s ≥ 0

Previously s was the maximum infeasibility across all inequalities.
Now each inequality has own infeasibility variable si, i = 1, . . .m

One advantage: when the original system is infeasible, the solution
of the above problem will be informative. The nonzero entries of s
will tell us which of the constraints cannot be satisfied
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