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Last time: optimization basics

e Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

e Properties and first-order optimality

e Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)



Outline

Today:
e Linear programs
e Quadratic programs
e Semidefinite programs

e Cone programs






Linear program

A linear program or LP is an optimization problem of the form

min L

T

subject to Dz <d
Ax=b

Observe that this is always a convex optimization problem

e First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

e Dantzig's simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we'll see interior point methods)

e Fundamental problem in convex optimization. Many diverse
applications, rich history



Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min L

xT

subject to Dz >d
x>0

Interpretation:
e c; : per-unit cost of food j
e d; : minimum required intake of nutrient ¢

e D;; : content of nutrient ¢ per unit of food j

x; : units of food j in the diet



Example: transportation problem
Ship commodities from given sources to destinations at min cost
m n
mljn Z Z CijTij
i=1 j=1

n
subject to inj <sj,t=1,....m
j=1

m
ZIL‘ijZdj,j:l,...,n, x>0
1=1

Interpretation:

e s; : supply at source ¢

N

e d; : demand at destination j
e c;;j : per-unit shipping cost from i to j

e 1;; : units shipped from i to j



Example: basis pursuit

Given y € R™ and X € R™*P, where p > n. Suppose that we seek
the sparsest solution to underdetermined linear system X5 =y

Nonconvex formulation:
min 0
i 151
subject to X8 =1y
where recall [|8]lo = >2%_; 1{; # 0}, the £ “norm”
The /1 approximation, often called basis pursuit:
min Bl
i 181

subject to XpB =y



Basis pursuit is a linear program. Reformulation:

min min
i 1511 ui
subject to XG =1y subject to

(Check that this makes sense to you)

172
z2>f
z>—p
XB=y



Example: Dantzig selector

Modification of previous problem, where we allow for X ~ y (we
don’t require exact equality), the Dantzig selector:?

min I5]
i 181
subject to || XT(y — XB)||oo < A
Here A > 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

!Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”
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Standard form

A linear program is said to be in standard form when it is written as

min lx

x

subject to Ax =b
x>0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min o+ azTQ:c
x

subject to Dz < d
Axr=b>

where ) = 0, i.e., positive semidefinite
Note that this problem is not convex when @ % 0

From now on, when we say quadratic program or QP, we implicitly
assume that @ >~ 0 (so the problem is convex)
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max ple— szQa:
T 2
subject to 1Tz =1
x>0

Interpretation:
e (i : expected assets' returns
e () : covariance matrix of assets’ returns
e v : risk aversion

e 1z : portfolio holdings (percentages)
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Example: support vector machines

Given y € {—1,1}", X € R™™P having rows z1,...x,, recall the
support vector machine or SVM problem:

L, oo -
min = +C ;
mn o lErOYs
subject to § >0,i=1,...n

yi(aTB+B)>1—&, i=1,...n

This is a quadratic program
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Example: lasso

Given y € R", X € R™ P, recall the lasso problem:
min [y - X85
subject to  ||B]]1 < s

Here s > 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):
1 2
min 3 ly = X518+ A5

Now A > 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

1
min e+ -2TQu
T 2

subject to Ax =b
x>0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:
min '
X
subject to Dz <d
Axr=10>
Can generalize by changing < to different (partial) order. Recall:

e S™ is space of n X n symmetric matrices
e S is the space of positive semidefinite matrices, i.e.,

ST ={X €S":u" Xu >0 for all ueR"}
e S7, is the space of positive definite matrices, i.e.,

St ={XeS":u"Xu>0forallueR"\{0}}
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Facts about S", S, S |

e Basic linear algebra facts, here A(X) = (A (X), ..., \(X)):

X eSS = )\(X)GR"
X eSS AX) e RY
Xesh, AX) eRY

e We can define an inner product over S™: given X, Y € §",
XeoY =tr(XY)
e We can define a partial ordering over S™: given X,Y € §”,
XY << X-YeS}

Note: for z,y € R", diag(x) = diag(y) < z >y (recall,
the latter is interpreted elementwise)
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min 'z
xr
subject to x1F1 + ...+ z,F, X F)
Ar =b

Here I} € s, forj=0,1,...n,and A € R™*" ¢ R", b € R™.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)
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Standard form

A semidefinite program is in standard form if it is written as
min CeX
X
subject to A; e X =b;,i=1,...m
X >0

Any semidefinite program can be written in standard form (for a
challenge, check this!)
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Example: theta function

Let G = (N, E) be an undirected graph, N = {1,...,n}, and
e w(G) : clique number of G
e X(G) : chromatic number of G

The Lovasz theta function:2
9(G) = max 117 e X

subject to e X =1
X >0

The Lovasz sandwich theorem: w(G) < 9(G) < x(G), where G is
the complement graph of G

2| ovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A: R™*™ — RP be a linear map,

Al e X
AX) =
Ape X
for Aj,... A, € R™" (and where A; o X = tr(A] X)). Finding
lowest-rank solution to an underdetermined system, nonconvex:

min rank(X)
X
subject to A(X) =b
Trace norm approximation:
min 1 X ||
X
subject to A(X) =b
This is indeed an SDP (but harder to show, requires duality ...)
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Conic program

A conic program is an optimization problem of the form:

min L

T

subject to Ax =b
D(z)+dec K

Here:
e c,x € R" and A € R"™*" b e R™
e D:R"™ — Y is alinear map, d € Y, for Euclidean space Y
e K CY is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = R"; for SDPs, K = S"}
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Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min '
x
subject to || Djz 4+ di|l < elz+ fi, i=1,...p
Az =b

This is indeed a cone program. Why? Recall the second-order cone

Q=A{(z,1): ||z]2 <t}

So we have
| Dz + di|2 < e;frx + fi <= (Dijxz+d;, eiTa: + fi) € Qi

for second-order cone @); of appropriate dimensions. Now take
K=0Q1x...xQp
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Observe that every LP is an SOCP. Further, every SOCP is an SDP

Why? Turns out that

tl =z

el <t = | 15 7] =0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:

A B 1 pT
[BT C]§O<:>A—BC B* >0

for A, C' symmetric and C >~ 0
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Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

ngltn ot
subject to Dx < d, %xTQx <t
Az =b
Now write 327 Qz < t <« ||(%Q1/2m, 31 =1)ll2 < 5(1+1)
Take a breath (phew!). Thus we have established the hierachy

LPs C QPs C SOCPs C SDPs C Conic programs

completing the picture we saw at the start
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