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See supplements for reviews of
e basic multivariate calculus

e basic linear algebra



Last time: convex sets and functions

“Convex calculus” makes it easy to check convexity. Tools:

e Definitions of convex sets and functions, classic examples
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e Key properties (e.g., first- and second-order characterizations
for functions)

e Operations that preserve convexity (e.g., affine composition)
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Outline

Today:
e Optimization terminology
e Properties and first-order optimality

e Equivalent transformations



Optimization terminology

Reminder: a convex optimization problem (or program) is
min f(@)
subject to  g;(x) <0,i=1,...m
Axr=1b>

where f and g;, ¢ = 1,...m are all convex, and the optimization
domain is D = dom(f) N ()%, dom(g;) (often we do not write D)
e f is called criterion or objective function
e g; is called inequality constraint function

e lfxeD, gi(x)<0,i=1,...m, and Az = b then zx is called
a feasible point

e The minimum of f(z) over all feasible points x is called the
optimal value, written f*



e If = is feasible and f(x) = f*, then x is called optimal; also
called a solution, or a minimizer!

e If x is feasible and f(x) < f*+¢, then x is called e-suboptimal
e If z is feasible and g;(x) = 0, then we say g; is active at x
e Convex minimization can be reposed as concave maximization

mxin f(z) max — flz

)
subject to  g;(z) <0, « subject to gi(z) <0
1=1,...m 2:1,...m

Az =0b Axr =10

Both are called convex optimization problems

INote: a convex optimization problem need not have solutions, i.e., need
not attain its minimum, but we will not be careful about this



Solution set
Let Xopt be the set of all solutions of convex problem, written
Xopt = argmin f(z)
subject to  g;(x) <0,i=1,...m
Axr=b
Key property: Xopt is a convex set
Proof: use definitions. If x,y are solutions, then for 0 <t <1,
o gi(tr + (1 —t)y) <tgi(w) + (1 —1t)gi(y) <0
o Altz+ (1 —t)y) =tAz+ (1 —t)Ay =b
o fltz+ (1 —t)y) <tf(z)+ (1 -0)f(y)=f*

Therefore tx 4 (1 — t)y is also a solution

Another key property: if f is strictly convex, then the solution is
unique, i.e., Xopt contains one element



Example: lasso
Given y € R", X € R™*P, consider the lasso problem:
min ly — XBI2
subject to  ||8][1 <'s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

e n > p and X has full column rank?

e p > n (“high-dimensional” case)?

How do our answers change if we changed criterion to Huber loss:

> plyi—alB), plz) = {27’ zl<d
=1

82| — 16% else



Example: support vector machines

Given y € {—1,1}", X € R™*P with rows z1, ...y, consider the
support vector machine or SVM problem:

B,B0,€
subject to & >0,i=1,...n
yi(e???ﬂ-f—ﬂo) >1—=&,1=1,...n

mn 813 +O36

Is this convex? What is the criterion, constraints, feasible set? Is
the solution (3, By, &) unique? What if changed the criterion to

Loz 1o 101
2||5||2+2ﬁ0+cz;§i ?
1=

For original criterion, what about 5 component, at the solution?



Local minima are global minima

For a convex problem, a feasible point x is called locally optimal is

there is some R > 0 such that

f(z) < f(y) for all feasible y such that ||z — ylls < R

Reminder: for convex optimization problems, local optima are

global optima
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Rewriting constraints
The optimization problem
min f(z)
x

subject to  gi(x) <0,i=1,...m
Az =b

can be rewritten as

min f(z) subject to z € C
x

where C' = {z : gi(z) <0, i=1,...m, Az = b}, the feasible set.
Hence the latter formulation is completely general

With I the indicator of C, we can write this in unconstrained form

m:gn f(x) + Ic(x)
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First-order optimality condition
For a convex problem
min f(xz) subject to z € C

and differentiable f, a feasible point z is optimal if and only if
Vi) '(y—z)>0 forallyeC

This is called the first-order condition

for optimality
—Vif(z)
In words: all feasible directions from =
RN are aligned with gradient V f(x)

Important special case: if C'=R"™ (unconstrained optimization),
then optimality condition reduces to familiar Vf(z) =0
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Example: quadratic minimization
Consider minimizing the quadratic function
L 7 T
fz) = 2% Qr+bx+c
where @ = 0. The first-order condition says that solution satisfies

Vi(z)=Qr+b=0

e if Q > 0, then there is a unique solution x = —Q~'b
e if @ is singular and b ¢ col(Q), then there is no solution (i.e.,

min, f(x) = —o00)
e if Q is singular and b € col(Q), then there are infinitely many
solutions

r=-Qb+2 z¢enull(Q)
where Q7 is the pseudoinverse of Q
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Example: equality-constrained minimization
Consider the equality-constrained convex problem:
min f(x) subject to Az =1b
xT

with f differentiable. Let's prove Lagrange multiplier optimality
condition
Vf(x)+ ATu=0 for some u

According to first-order optimality, solution x satisfies Ax = b and
Vf(x) (y —x) >0 forall y such that Ay =b
This is equivalent to
Vf(z)Tv=0 forall venull(A)

Result follows because null(A)+ = row(A)
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Example: projection onto a convex set
Consider projection onto convex set C"
min la — |3 subject to z € C
First-order optimality condition says that the solution x satisfies

Vi)' (y—z)=(x—a)l(y—z)>0 forallyeC

Equivalently, this says that
a—x € No(z)

where recall N (x) is the normal
cone to C at x
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Partial optimization

Reminder: g(z) = mingec f(z,y) is convex in x, provided that f
is convex in (x,y) and C' is a convex set

Therefore we can always partially optimize a convex problem and
retain convexity

E.g., if we decompose = = (x1,x2) € R™ "2 then

min f(x1,22) min f(z1)

Z1,22
—

subject to  g1(z1) <0 subject to  g1(z1) <0

g2(xz2) <0

where f(z1) = min{f(z1,z2) : g2(z2) < 0}. The right problem is
convex if the left problem is
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Example: hinge form of SVMs
Recall the SVM problem

min
B,80,€

subject to & > 0, yi(xiTB +B0)>1-&,i=1,...n

1 n
5”5“% + CZ&'
i=1

Rewrite the constraints as & > max{0,1 — y;(z! 8 + £o)}. Indeed
we can argue that we have = at solution

Therefore plugging in for optimal £ gives the hinge form of SVMs:

win S1818+ 0> [1 - T8+ 5o)]

i=1

where a4y = max{0,a} is called the hinge function
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Transformations and change of variables
If h: R — R is a monotone increasing transformation, then
mwin f(x) subject to z € C
— mwin h(f(x)) subject to z € C

Similarly, inequality or equality constraints can be transformed and
yield equivalent optimization problems. Can use this to reveal the
“hidden convexity” of a problem

If  : R™ — R™ is one-to-one, and its image covers feasible set C,
then we can change variables in an optimization problem:

min f(z) subject to z € C
x

= min f(¢(y)) subject to ¢(y) €C
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Example: geometric programming

A monomial is a function f: R | — R of the form

ai a2 an

f()—’}/l'll'g Ty

forv >0, a1,...a, € R. A posynomial is a sum of monomials,

E Ve F xgk? - ke

A geometric program is of the form

min  f()

subject to gi(x) <1,i=1,...m
hj(x)=1,5=1,...r

where f, g;, 1 =1,...m are posynomials and h;, j =1,...r are
monomials. This is nonconvex
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Given f(x) = ya{'z5? .- xln, let y; = log x; and rewrite this as
’y(eyl)‘” (eyz)az . (eyn)an _ eaTy+b

for b = log~. Also, a posynomial can be written as Zizl %k Y+0r
With this variable substitution, and after taking logs, a geometric
program is equivalent to

Po
min log (Z eagkerbOk)
xT

k=1

k=1
c?y+dj20,j:1,...r

Pi
subject to log (Z e“iTlgerbik) <0,i=1,...m

This is convex, recalling the convexity of soft max functions
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Several interesting problems are geometric programs, e.g., floor
planning:

w;

(w4, 9i)

W

See Boyd et al. (2007), “A tutorial on geometric programming”,
and also Chapter 8.8 of B & V book



Eliminating equality constraints

Important special case of change of variables: eliminating equality
constraints. Given the problem

min f(x)
subject to  gi(z) <0,i=1,...m
Az =10

we can always express any feasible point as x = My + zg, where
Azg = b and col(M) = null(A4). Hence the above is equivalent to

min f(My + o)
subject to  gi(My+x0) <0,i=1,...m

Note: this is fully general but not always a good idea (practically)
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Introducing slack variables

Essentially opposite to eliminating equality contraints: introducing
slack variables. Given the problem
min f(z)
x
subject to  ¢g;(z) <0,i=1,...m
Ax =10

we can transform the inequality constraints via

min f(x)

x,8

subject to s, >0,i=1,...m
gi(x)+s;=0,i=1,...m

Axr =10

Note: this is no longer convex unless g;, t = 1,...,n are affine
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Relaxing nonaffine equalities
Given an optimization problem
H&in f(z) subject to ze€C
we can always take an enlarged constraint set C' O C' and consider
rrgin f(z) subject to z e C

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,
hj(x)=0,j=1,...r
where hj, j = 1,...r are convex but nonaffine, are replaced with

hj(x) <0,j=1,...r
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Example: maximum utility problem

The maximum utility problem models investment/consumption:
T
ma
nax Z au(y)
t=1
subject to  by1 =by+ f(by) —xy, t=1,...T
0< 2 Sbt, tzl,...T

Here b; is the budget and x; is the amount consumed at time ¢; f
is an investment return function, w utility function, both concave
and increasing

Is this a convex problem? What if we replace equality constraints
with inequalities:

bt+1 < bt+f(bt)—l't, t=1,...77
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Example: principal components analysis

Given X € R"*P, consider the low rank approximation problem:

m}%n |X — R||% subject to rank(R) =k

Here [|A|% = >"iL, D2F_, A%, the entrywise squared £2 norm, and

rank(A) denotes the rank of A

Also called principal components analysis or PCA problem. Given
X =UDVT, singular value decomposition or SVD, the solution is

R =U,DyV,I

where Uy, V. are the first k columns of U,V and Dy is the first k
diagonal elements of D. l.e., R is reconstruction of X from its first
k principal components

25



The PCA problem is not convex. Let's recast it. First rewrite as

énisn |X — XZ||% subject to rank(Z) =k, Z is a projection
€SP

< max tr(SZ) subject to rank(Z) =k, Z is a projection
€

where S = XT X . Hence constraint set is the nonconvex set
C= {Z eSP:N(2) € {01}, i=1,...p, tr(Z) = k}

where \;(Z), i = 1,...n are the eigenvalues of Z. Solution in this
formulation is
Z =WV

where V}, gives first k columns of V
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Now consider relaxing constraint set to Fj, = conv(C), its convex
hull. Note
Fe={Z2eSP:N(2Z)e€[0,1], i =1,...p, tr(Z) =k}
={ZeSP:0=x7Z=21,tr(Z)=k}

This set is called the Fantope of order k. It is convex. Hence, the
linear maximization over the Fantope, namely

max tr(S%2)
ZEFy,

is a convex problem. Remarkably, this is equivalent to the original
nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations™)
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