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Last time: coordinate descent

Consider the problem
min
x

f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable
and each hi convex. Coordinate descent: let x(0) ∈ Rn, and repeat

x
(k)
i = argmin

xi
f
(
x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . .

• Very simple and easy to implement

• Careful implementations can achieve state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

2



Reminder: conjugate functions

Recall that given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex, then ∇f∗(y) = argmin
z

f(z)− yT z
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Outline

Today:

• Dual ascent

• Dual decomposition

• Augmented Lagrangians

• A peak at ADMM
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Dual ascent

Even if we can’t derive dual (conjugate) in closed form, we can still
use dual-based gradient or subgradient methods

Consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = −f∗(−ATu)− bTu,
note that

∂g(u) = A∂f∗(−ATu)− b
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Therefore, using what we know about conjugates

∂g(u) = Ax− b where x ∈ argmin
z

f(z) + uTAz

The dual subgradient method (for maximizing the dual objective)
starts with an initial dual guess u(0), and repeats for k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

Step sizes tk, k = 1, 2, 3, . . . , are chosen in standard ways
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Recall that if f is strictly convex, then f∗ is differentiable, and so
this becomes dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

(Difference is that each x(k) is unique, here.) Again, step sizes tk,
k = 1, 2, 3, . . . are chosen in standard ways

Lastly, proximal gradients and acceleration can be applied as they
would usually
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Smoothness of f and f ∗

Assume that f is a closed and convex function. Then f is strongly
convex with parameter m ⇐⇒ ∇f∗ Lipschitz with parameter 1/m

Proof of “=⇒”: Recall, if g strongly convex with minimizer x, then

g(y) ≥ g(x) + m

2
‖y − x‖2, for all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
m

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
m

2
‖xu − xv‖22

Adding these together, using Cauchy-Schwartz, rearranging shows
that ‖xu − xv‖2 ≤ ‖u− v‖2/m
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Proof of “⇐=”: for simplicity, call g = f∗ and L = 1/m. As ∇g is
Lipschitz with constant L, so is gx(z) = g(z)−∇g(x)T z, hence

gx(z) ≤ gx(y) +∇gx(y)T (z − y) +
L

2
‖z − y‖22

Minimizing each side over z, and rearranging, gives

1

2L
‖∇g(x)−∇g(y)‖22 ≤ g(y)− g(x) +∇g(x)T (x− y)

Exchanging roles of x, y, and adding together, gives

1

L
‖∇g(x)−∇g(y)‖22 ≤ (∇g(x)−∇g(y))T (x− y)

Let u = ∇f(x), v = ∇g(y); then x ∈ ∂g∗(u), y ∈ ∂g∗(v), and the
above reads (x− y)T (u− v) ≥ ‖u− v‖22/L, implying the result
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Convergence guarantees

The following results hold from combining the last fact with what
we already know about gradient descent:

• If f is strongly convex with parameter m, then dual gradient
ascent with constant step sizes tk = m converges at sublinear
rate O(1/ε)

• If f is strongly convex with parameter m and ∇f is Lipschitz
with parameter L, then dual gradient ascent with step sizes
tk = 2/(1/m+ 1/L) converges at linear rate O(log(1/ε))

Note that these results describe convergence of the dual objective
to its optimal value
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Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) ∈ Rn divides into B blocks of variables, with
each xi ∈ Rni . We can also partition A accordingly

A = [A1 . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient, is
that the minimization decomposes into B separate problems:

x+ ∈ argmin
x

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+i ∈ argmin
xi

fi(xi) + uTAixi, i = 1, . . . B
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Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

( B∑
i=1

Aix
(k)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3
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Dual decomposition with inequality constraints

Consider

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition, i.e., projected subgradient method:

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) =

(
u(k−1) + tk

( B∑
i=1

Aix
(k)
i − b

))
+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui},
i = 1, . . . ,m

13



Price coordination interpretation (Vandenberghe):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . .m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative
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Augmented Lagrangian method
also known as: method of multipliers

Disadvantage of dual ascent: require strong conditions to ensure
convergence. Improved by augmented Lagrangian method, also
called method of multipliers. We transform the primal problem:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

where ρ > 0 is a parameter. Clearly equivalent to original problem,
and objective is strongly convex when A has full column rank. Use
dual gradient ascent:

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)
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Notice step size choice tk = ρ in dual algorithm. Why? Since x(k)

minimizes f(x) + (u(k−1))TAx+ ρ
2‖Ax− b‖

2
2 over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is the stationarity condition for original primal problem; under
mild conditions Ax(k) − b→ 0 as k →∞ (primal iterates become
feasible), so KKT conditions are satisfied in the limit and x(k), u(k)

converge to solutions

• Advantage: much better convergence properties

• Disadvantage: lose decomposability! (Separability is ruined by
augmented Lagrangian ...)
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Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: try for best
of both worlds. Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

As before, we augment the objective

min
x

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

subject to Ax+Bz = c

for a parameter ρ > 0. We define augmented Lagrangian

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) + ρ

2
‖Ax+Bz − c‖22
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ADMM repeats the steps, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)

Note that the usual method of multipliers would have replaced the
first two steps by a joint minimization

(x(k), z(k)) = argmin
x,z

Lρ(x, z, u
(k−1))
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Convergence guarantees

Under modest assumptions on f, g (these do not require A,B to
be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = Ax(k) −Bz(k) − c→ 0 as
k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where
f? + g? is the optimal primal objective value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method.
Theory still being developed, see, e.g., in Hong and Luo (2012),
Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015)
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Scaled form ADMM

Scaled form: denote w = u/ρ, so augmented Lagrangian becomes

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax−Bx+ c+ w‖22 −

ρ

2
‖w‖22

and ADMM updates become

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that here kth iterate w(k) is just a running sum of residuals:

w(k) = w(0) +

k∑
i=1

(
Ax(i) +Bz(i) − c

)
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Example: alternating projections

Consider finding a point in intersection of convex sets C,D ⊆ Rn:

min
x

IC(x) + ID(x)

To get this into ADMM form, we express it as

min
x,z

IC(x) + ID(z) subject to x− z = 0

Each ADMM cycle involves two projections:

x(k) = argmin
x

PC
(
z(k−1) − w(k−1)

)
z(k) = argmin

z
PD
(
x(k) + w(k−1)

)
w(k) = w(k−1) + x(k) − z(k)
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Compare classic alternating projections algorithm (von Neumann):

x(k) = argmin
x

PC
(
z(k−1)

)
z(k) = argmin

z
PD
(
x(k)

)
Difference is ADMM utilizes a dual variable w to offset projections.
When (say) C is a linear subspace, ADMM algorithm becomes

x(k) = argmin
x

PC
(
z(k−1)

)
z(k) = argmin

z
PD
(
x(k) + w(k−1)

)
w(k) = w(k−1) + x(k) − z(k)

Initialized at z(0) = y, this is equivalent to Dykstra’s algorithm for
finding the closest point in C ∩D to y
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